咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是4871-4880 订阅
排序:
On Generalizing Beyond Domains in Cross-Domain Continual Learning
On Generalizing Beyond Domains in Cross-Domain Continual Lea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Simon, Christian Faraki, Masoud Tsai, Yi-Hsuan Yu, Xiang Schulter, Samuel Suh, Yumin Harandi, Mehrtash Chandraker, Manmohan Australian Natl Univ Canberra ACT Australia NEC Labs Amer Princeton NJ USA Monash Univ Melbourne Vic Australia Univ Calif San Diego San Diego CA USA Data61 Sydney NSW Australia Phiar Technol Redwood City CA USA
Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many re... 详细信息
来源: 评论
PromptSync: Bridging Domain Gaps in vision-Language Models through Class-Aware Prototype Alignment and Discrimination
PromptSync: Bridging Domain Gaps in Vision-Language Models t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Khandelwal, Anant Glance AI Bangalore Karnataka India
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tu... 详细信息
来源: 评论
You Do Not Need Additional Priors or Regularizers in Retinex-based Low-light Image Enhancement
You Do Not Need Additional Priors or Regularizers in Retinex...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fu, Huiyuan Zheng, Wenkai Meng, Xiangyu Wang, Xin Wang, Chuanming Ma, Huadong Beijing Univ Posts & Telecommun Beijing Peoples R China SUNY Stony Brook Stony Brook NY USA
Images captured in low-light conditions often suffer from significant quality degradation. Recent works have built a large variety of deep Retinex-based networks to enhance low-light images. The Retinex-based methods ... 详细信息
来源: 评论
Perceptual in-Loop Filter for Image and Video Compression
Perceptual in-Loop Filter for Image and Video Compression
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Huairui Ren, Guangjie Ouyang, Tong Zhang, Junxi Han, Wenwei Liu, Zizheng Chen, Zhenzhong Wuhan Univ Wuhan Peoples R China Tencent Media Lab Shenzhen Peoples R China
In this paper, we introduce our hybrid image and video compression scheme enhanced by CNN-optimized in-loop filter. Specifically, a Structure Preserving in-Loop Filter (SPiLF) is incorporated in the hybrid video codec... 详细信息
来源: 评论
Progressive Transformation Learning for Leveraging Virtual Images in Training
Progressive Transformation Learning for Leveraging Virtual I...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shen, Yi-Ting Lee, Hyungtae Kwon, Heesung Bhattacharyya, Shuvra S. Univ Maryland College Pk MD USA DEVCOM Army Res Lab Adelphi MD USA
To effectively interrogate UAV-based images for detecting objects of interest, such as humans, it is essential to acquire large-scale UAV-based datasets that include human instances with various poses captured from wi... 详细信息
来源: 评论
CoordGAN: Self-Supervised Dense Correspondences Emerge from GANs
CoordGAN: Self-Supervised Dense Correspondences Emerge from ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mu, Jiteng De Mello, Shalini Yu, Zhiding Vasconcelos, Nuno Wang, Xiaolong Kautz, Jan Liu, Sifei Univ Calif San Diego La Jolla CA 92093 USA Nvidia Santa Clara CA USA
Recent advances show that Generative Adversarial Networks (GANs) can synthesize images with smooth variations along semantically meaningful latent directions, such as pose, expression, layout, etc. While this indicate... 详细信息
来源: 评论
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices  32
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Peng, Chong Chen, Chenglizhao Kang, Zhao Li, Jianbo Cheng, Qiang Qingdao Univ Coll Comp Sci & Technol Qingdao Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Hefei Peoples R China Univ Kentucky Dept Comp Sci Lexington KY 40506 USA
Robust principal component analysis (RPCA) has drawn significant attentions due to its powerful capability in recovering low-rank matrices as well as successful appplications in various real world problems. The curren... 详细信息
来源: 评论
Privacy-preserving Online AutoML for Domain-Specific Face Detection
Privacy-preserving Online AutoML for Domain-Specific Face De...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yan, Chenqian Zhang, Yuge Zhang, Quanlu Yang, Yaming Jiang, Xinyang Yang, Yuqing Wang, Baoyuan Microsoft Res Beijing Peoples R China Xiaobing Ai Beijing Peoples R China
Despite the impressive progress of general face detection, the tuning of hyper-parameters and architectures is still critical for the performance of a domain-specific face detector. Though existing AutoML works can sp... 详细信息
来源: 评论
Modeling sRGB Camera Noise with Normalizing Flows
Modeling sRGB Camera Noise with Normalizing Flows
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kousha, Shayan Maleky, Ali Brown, Michael S. Brubaker, Marcus A. York Univ N York ON Canada Vector Inst Toronto ON Canada Samsung AI Ctr Toronto Toronto ON Canada
Noise modeling and reduction are fundamental tasks in low-level computer vision. They are particularly important for smartphone cameras relying on small sensors that exhibit visually noticeable noise. There has recent... 详细信息
来源: 评论
RIFormer: Keep Your vision Backbone Effective But Removing Token Mixer
RIFormer: Keep Your Vision Backbone Effective But Removing T...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jiahao Zhang, Songyang Liu, Yong Wu, Taiqiang Yang, Yujiu Liu, Xihui Chen, Kai Luo, Ping Lin, Dahua Shanghai AI Lab Shanghai Peoples R China Univ HongKong Hong Kong Peoples R China Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China
This paper studies how to keep a vision backbone effective while removing token mixers in its basic building blocks. Token mixers, as self-attention for vision transformers (ViTs), are intended to perform information ... 详细信息
来源: 评论