咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是4881-4890 订阅
排序:
Meta Agent Teaming Active Learning for Pose Estimation
Meta Agent Teaming Active Learning for Pose Estimation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gong, Jia Fan, Zhipeng Ke, Qiuhong Rahmani, Hossein Liu, Jun Singapore Univ Technol & Design Singapore Singapore NYU New York NY 10003 USA Univ Melbourne Parkville Vic Australia Univ Lancaster Lancaster England
The existing pose estimation approaches often require a large number of annotated images to attain good estimation performance, which are laborious to acquire. To reduce the human efforts on pose annotations, we propo... 详细信息
来源: 评论
DynamicDet: A Unified Dynamic Architecture for Object Detection
DynamicDet: A Unified Dynamic Architecture for Object Detect...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Zhihao Wang, Yongtao Zhang, Jinhe Chu, Xiaojie Peking Univ Wangxuan Inst Comp Technol Beijing Peoples R China
Dynamic neural network is an emerging research topic in deep learning. With adaptive inference, dynamic models can achieve remarkable accuracy and computational efficiency. However, it is challenging to design a power... 详细信息
来源: 评论
Continual Segmentation with Disentangled Objectness Learning and Class recognition
Continual Segmentation with Disentangled Objectness Learning...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gong, Yizheng Yu, Siyue Wang, Xiaoyang Xiao, Jimin Xian Jiaotong Liverpool Univ Suzhou Peoples R China Univ Liverpool Liverpool Merseyside England Metavisioncn Istanbul Turkiye
Most continual segmentation methods tackle the problem as a per-pixel classification task. However, such a paradigm is very challenging, and we find query-based segmenters with built-in objectness have inherent advant... 详细信息
来源: 评论
Recursive Joint Cross-Modal Attention for Multimodal Fusion in Dimensional Emotion recognition
Recursive Joint Cross-Modal Attention for Multimodal Fusion ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Praveen, R. Gnana Alam, Jahangir Comp Res Inst Montreal CRIM Montreal PQ Canada
Though multimodal emotion recognition has achieved significant progress over recent years, the potential of rich synergic relationships across the modalities is not fully exploited. In this paper, we introduce Recursi... 详细信息
来源: 评论
DAVANet: Stereo Deblurring with View Aggregation  32
DAVANet: Stereo Deblurring with View Aggregation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Shangchen Zhang, Jiawei Zuo, Wangmeng Xie, Haozhe Pan, Jinshan Ren, Jimmy SenseTime Res Harbin Peoples R China Harbin Inst Technol Harbin Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China
Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles. However, they also suffer from blurry images in dynamic scenes which leads to visual di... 详细信息
来源: 评论
Rethinking computer-aided Tuberculosis Diagnosis
Rethinking Computer-aided Tuberculosis Diagnosis
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yun Wu, Yu-Huan Ban, Yunfeng Wang, Huifang Cheng, Ming-Ming Nankai Univ Coll Comp Sci TKLNDST Tianjin Peoples R China InferVision Beijing Peoples R China
As a serious infectious disease, tuberculosis (TB) is one of the major threats to human health worldwide, leading to millions of deaths every year. Although early diagnosis and treatment can greatly improve the chance... 详细信息
来源: 评论
CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning  32
CANet: Class-Agnostic Segmentation Networks with Iterative R...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Chi Lin, Guosheng Liu, Fayao Yao, Rui Shen, Chunhua Nanyang Technol Univ Singapore Singapore Univ Adelaide Adelaide SA Australia China Univ Min & Technol Beijing Peoples R China
Recent progress in semantic segmentation is driven by deep Convolutional Neural Networks and large-scale labeled image datasets. However, data labeling for pixel-wise segmentation is tedious and costly. Moreover, a tr... 详细信息
来源: 评论
Stitchable Neural Networks
Stitchable Neural Networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pan, Zizheng Cai, Jianfei Zhuang, Bohan Monash Univ ZIP Lab Clayton Vic Australia
The public model zoo containing enormous powerful pretrained model families (e.g., ResNet/DeiT) has reached an unprecedented scope than ever, which significantly contributes to the success of deep learning. As each mo... 详细信息
来源: 评论
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Circle Loss: A Unified Perspective of Pair Similarity Optimi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Yifan Cheng, Changmao Zhang, Yuhan Zhang, Chi Zheng, Liang Wang, Zhongdao Wei, Yichen MEGVII Technol Beijing Peoples R China Beihang Univ Beijing Peoples R China Australian Natl Univ Canberra ACT Australia Tsinghua Univ Beijing Peoples R China
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity s(p) and minimize the between-class similarity s(n). We find a majority of loss fun... 详细信息
来源: 评论
Adapting Object Detectors via Selective Cross-Domain Alignment  32
Adapting Object Detectors via Selective Cross-Domain Alignme...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Xinge Pang, Jiangmiao Yang, Ceyuan Shi, Jianping Lin, Dahua Chinese Univ Hong Kong Hong Kong Peoples R China Zhejiang Univ Hangzhou Peoples R China SenseTime Res Hong Kong Peoples R China
State-of-the-art object detectors are usually trained on public datasets. They often face substantial difficulties when applied to a different domain, where the imaging condition differs significantly and the correspo... 详细信息
来源: 评论