咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是4921-4930 订阅
排序:
Jumping Manifolds: Geometry Aware Dense Non-Rigid Structure from Motion  32
Jumping Manifolds: Geometry Aware Dense Non-Rigid Structure ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kumar, Suryansh Australian Natl Univ CECS Canberra ACT 2601 Australia
Given dense image feature correspondences of a non-rigidly moving object across multiple frames, this paper proposes an algorithm to estimate its 3D shape for each frame. To solve this problem accurately, the recent s... 详细信息
来源: 评论
Recursive Visual Attention in Visual Dialog  32
Recursive Visual Attention in Visual Dialog
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Niu, Yulei Zhang, Hanwang Zhang, Manli Zhang, Jianhong Lu, Zhiwu Wen, Ji-Rong Renmin Univ China Beijing Key Lab Big Data Management & Anal Method Sch Informat Beijing 100872 Peoples R China Nanyang Technol Univ Singapore 639798 Singapore
Visual dialog is a challenging vision-language task, which requires the agent to answer multi-round questions about an image. It typically needs to address two major problems: (1) How to answer visually-grounded quest... 详细信息
来源: 评论
Surrogate Contrastive Network for Supervised Band Selection in Multispectral computer vision Tasks  32
Surrogate Contrastive Network for Supervised Band Selection ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bernal, Edgar A. Univ Rochester Rochester Data Sci Consortium 260 E Main St Rochester NY 14604 USA
computer vision techniques that operate on hyper- and multispectral imagery benefit from the additional amount of spectral information relative to those that exploit traditional RGB or monochromatic visual data. Howev... 详细信息
来源: 评论
Improving Action Localization by Progressive Cross-stream Cooperation  32
Improving Action Localization by Progressive Cross-stream Co...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Su, Rui Ouyang, Wanli Zhou, Luping Xu, Dong Univ Sydney Sch Elect & Informat Engn Sydney NSW Australia SenseTime Comp Vis Res Grp Sydney NSW Australia
Spatio-temporal action localization consists of three levels of tasks: spatial localization, action classification, and temporal segmentation. In this work, we propose a new Progressive Cross-stream Cooperation (PCSC)... 详细信息
来源: 评论
Normalized and Geometry-Aware Self-Attention Network for Image Captioning
Normalized and Geometry-Aware Self-Attention Network for Ima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guo, Longteng Liu, Jing Zhu, Xinxin Yao, Peng Lu, Shichen Lu, Hanqing Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Univ Sci & Technol Beijing Beijing Peoples R China Wuhan Univ Wuhan Peoples R China
Self-attention (SA) network has shown profound value in image captioning. In this paper, we improve SA from two aspects to promote the performance of image captioning. First, we propose Normalized Self-Attention (NSA)... 详细信息
来源: 评论
Leveraging per Image-Token Consistency for vision-Language Pre-training
Leveraging per Image-Token Consistency for Vision-Language P...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gou, Yunhao Ko, Tom Yang, Hansi Kwok, James Zhang, Yu Wang, Mingxuan Southern Univ Sci & Technol Shenzhen Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China ByteDance Ai Lab Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Most existing vision-language pre-training (VLP) approaches adopt cross-modal masked language modeling (CMLM) to learn vision-language associations. However, we find that CMLM is insufficient for this purpose accordin... 详细信息
来源: 评论
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tong, Shengbang Liu, Zhuang Zhai, Yuexiang Ma, Yi Lecun, Yann Xie, Saining NYU New York NY 10003 USA Meta FAIR Menlo Pk CA 94025 USA Univ Calif Berkeley Berkeley CA USA
Is vision good enough for language? Recent advancements in multimodal models primarily stem from the powerful reasoning abilities of large language models (LLMs). However, the visual component typically depends only o... 详细信息
来源: 评论
Spatial-Frequency Mutual Learning for Face Super-Resolution
Spatial-Frequency Mutual Learning for Face Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Chenyang Jiang, Junjun Zhong, Zhiwei Liu, Xianming Harbin Inst Technol Sch Comp Sci & Technol Harbin Peoples R China
Face super-resolution (FSR) aims to reconstruct high-resolution (HR) face images from the low-resolution (LR) ones. With the advent of deep learning, the FSR technique has achieved significant breakthroughs. However, ... 详细信息
来源: 评论
Layered Depth Refinement with Mask Guidance
Layered Depth Refinement with Mask Guidance
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Soo Ye Zhang, Jianming Niklaus, Simon Fan, Yifei Chen, Simon Lin, Zhe Kim, Munchurl Korea Adv Inst Sci & Technol Daejeon South Korea Adobe Inc San Jose CA USA
Depth maps are used in a wide range of applications from 3D rendering to 2D image effects such as Bokeh. However, those predicted by single image depth estimation (SIDE) models often fail to capture isolated holes in ... 详细信息
来源: 评论
Accelerating vision-Language Pretraining with Free Language Modeling
Accelerating Vision-Language Pretraining with Free Language ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Teng Ge, Yixiao Zheng, Feng Cheng, Ran Shan, Ying Qie, Xiaohu Luo, Ping Southern Univ Sci & Technol Shenzhen Peoples R China Univ Hong Kong Hong Kong Peoples R China ARC Lab Shenzhen Peoples R China Tencent PCG Shenzhen Peoples R China Peng Cheng Lab Shenzhen Peoples R China Shanghai AI Lab Shanghai Peoples R China
The state of the arts in vision-language pretraining (VLP) achieves exemplary performance but suffers from high training costs resulting from slow convergence and long training time, especially on large-scale web data... 详细信息
来源: 评论