咨询与建议

限定检索结果

文献类型

  • 11,414 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 11,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,979 篇 工学
    • 7,533 篇 计算机科学与技术...
    • 805 篇 机械工程
    • 401 篇 电气工程
    • 390 篇 软件工程
    • 231 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物工程
    • 37 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 13 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 6 篇 仪器科学与技术
    • 4 篇 土木工程
    • 3 篇 轻工技术与工程
  • 3,137 篇 医学
    • 3,137 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 307 篇 理学
    • 200 篇 系统科学
    • 63 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 化学
  • 29 篇 管理学
    • 17 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 艺术学

主题

  • 5,612 篇 computer vision
  • 2,584 篇 training
  • 2,092 篇 pattern recognit...
  • 1,682 篇 computational mo...
  • 1,496 篇 visualization
  • 1,343 篇 three-dimensiona...
  • 1,098 篇 semantics
  • 1,007 篇 benchmark testin...
  • 1,005 篇 codes
  • 927 篇 computer archite...
  • 898 篇 deep learning
  • 790 篇 task analysis
  • 708 篇 feature extracti...
  • 571 篇 conferences
  • 563 篇 face recognition
  • 520 篇 transformers
  • 517 篇 neural networks
  • 493 篇 object detection
  • 476 篇 image segmentati...
  • 452 篇 cameras

机构

  • 172 篇 univ sci & techn...
  • 150 篇 univ chinese aca...
  • 148 篇 tsinghua univ pe...
  • 145 篇 carnegie mellon ...
  • 136 篇 chinese univ hon...
  • 116 篇 peng cheng lab p...
  • 106 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 96 篇 sensetime res pe...
  • 95 篇 tsinghua univers...
  • 91 篇 shanghai ai lab ...
  • 85 篇 shanghai jiao to...
  • 83 篇 alibaba grp peop...
  • 81 篇 peng cheng labor...
  • 80 篇 zhejiang univers...
  • 80 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 university of ch...
  • 75 篇 australian natl ...
  • 75 篇 tech univ munich...

作者

  • 64 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 39 篇 tao dacheng
  • 35 篇 loy chen change
  • 32 篇 tian qi
  • 31 篇 zhou jie
  • 31 篇 sun jian
  • 30 篇 liu yang
  • 29 篇 vasconcelos nuno
  • 29 篇 qi tian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 boxin shi
  • 26 篇 li xin
  • 26 篇 luc van gool
  • 26 篇 pollefeys marc
  • 25 篇 liu xiaoming
  • 25 篇 ying shan

语言

  • 11,420 篇 英文
  • 3 篇 其他
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021"
11423 条 记 录,以下是41-50 订阅
排序:
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
Self-supervised Augmentation Consistency for Adapting Semant...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Araslanov, Nikita Roth, Stefan Tech Univ Darmstadt Dept Comp Sci Darmstadt Germany Hessian AI Darmstadt Germany
We propose an approach to domain adaptation for semantic segmentation that is both practical and highly accurate. In contrast to previous work, we abandon the use of computationally involved adversarial objectives, ne... 详细信息
来源: 评论
OCONet: Image Extrapolation by Object Completion
OCONet: Image Extrapolation by Object Completion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bowen, Richard Strong Chang, Huiwen Herrmann, Charles Teterwak, Piotr Liu, Ce Zabih, Ramin Cornell Tech New York NY 10044 USA Google Res Mountain View CA USA Boston Univ Boston MA 02215 USA
Image extrapolation extends an input image beyond the originally-captured field of view. Existing methods struggle to extrapolate images with salient objects in the foreground or are limited to very specific objects s... 详细信息
来源: 评论
InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
InverseForm: A Loss Function for Structured Boundary-Aware S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Borse, Shubhankar Wang, Ying Zhang, Yizhe Porikli, Fatih Qualcomm AI Res San Diego CA 92121 USA
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network, which efficiently learns the degree of parametric transformations between estimated and target boundaries.... 详细信息
来源: 评论
Checkerboard Context Model for Efficient Learned Image Compression
Checkerboard Context Model for Efficient Learned Image Compr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: He, Dailan Zheng, Yaoyan Sun, Baocheng Wang, Yan Qin, Hongwei SenseTime Res Hong Kong Peoples R China
For learned image compression, the autoregressive context model is proved effective in improving the rate-distortion (RD) performance. Because it helps remove spatial redundancies among latent representations. However... 详细信息
来源: 评论
Few-Shot Classification with Feature Map Reconstruction Networks
Few-Shot Classification with Feature Map Reconstruction Netw...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wertheimer, Davis Tang, Luming Hariharan, Bharath Cornell Univ Ithaca NY 14853 USA
In this paper we reformulate few-shot classification as a reconstruction problem in latent space. The ability of the network to reconstruct a query feature map from support features of a given class predicts membershi... 详细信息
来源: 评论
Distilling Knowledge via Knowledge Review
Distilling Knowledge via Knowledge Review
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Pengguang Liu, Shu Zhao, Hengshuang Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China SmartMore Hong Kong Peoples R China Univ Oxford Oxford England
Knowledge distillation transfers knowledge from the teacher network to the student one, with the goal of greatly improving the performance of the student network. Previous methods mostly focus on proposing feature tra... 详细信息
来源: 评论
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
A Large-Scale Study on Unsupervised Spatiotemporal Represent...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Feichtenhofer, Christoph Fan, Haoqi Xiong, Bo Girshick, Ross He, Kaiming Facebook AI Res FAIR Paris France
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generali... 详细信息
来源: 评论
Learning Goals from Failure
Learning Goals from Failure
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Epstein, Dave Vondrick, Carl Columbia Univ New York NY 10027 USA
We introduce a framework that predicts the goals behind observable human action in video. Motivated by evidence in developmental psychology, we leverage video of unintentional action to learn video representations of ... 详细信息
来源: 评论
Can We Characterize Tasks Without Labels or Features?
Can We Characterize Tasks Without Labels or Features?
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wallace, Bram Wu, Ziyang Hariharan, Bharath Cornell Univ Ithaca NY 14853 USA
The problem of expert model selection deals with choosing the appropriate pretrained network ("expert") to transfer to a target task. Methods, however, generally depend on two separate assumptions: the prese... 详细信息
来源: 评论
Deep Multi-Task Learning for Joint Localization, Perception, and Prediction
Deep Multi-Task Learning for Joint Localization, Perception,...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Phillips, John Martinez, Julieta Barsan, Ioan Andrei Casas, Sergio Sadat, Abbas Urtasun, Raquel Uber Adv Technol Grp Pittsburgh PA 15201 USA Univ Waterloo Waterloo ON Canada Univ Toronto Toronto ON Canada
Over the last few years, we have witnessed tremendous progress on many subtasks of autonomous driving including perception, motion forecasting, and motion planning. However, these systems often assume that the car is ... 详细信息
来源: 评论