咨询与建议

限定检索结果

文献类型

  • 3,854 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3,855 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,938 篇 工学
    • 2,846 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 141 篇 机械工程
    • 134 篇 光学工程
    • 43 篇 生物工程
    • 28 篇 信息与通信工程
    • 10 篇 控制科学与工程
    • 10 篇 交通运输工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,540 篇 医学
    • 1,540 篇 临床医学
  • 176 篇 理学
    • 137 篇 物理学
    • 44 篇 生物学
    • 30 篇 数学
    • 17 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 6 篇 法学
    • 4 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,497 篇 computer vision
  • 1,153 篇 pattern recognit...
  • 1,102 篇 training
  • 834 篇 conferences
  • 688 篇 computational mo...
  • 531 篇 visualization
  • 465 篇 computer archite...
  • 429 篇 benchmark testin...
  • 398 篇 semantics
  • 377 篇 three-dimensiona...
  • 362 篇 codes
  • 307 篇 feature extracti...
  • 297 篇 task analysis
  • 296 篇 deep learning
  • 262 篇 neural networks
  • 226 篇 image segmentati...
  • 221 篇 estimation
  • 218 篇 object detection
  • 212 篇 cameras
  • 205 篇 measurement

机构

  • 50 篇 univ sci & techn...
  • 47 篇 peng cheng lab p...
  • 46 篇 tsinghua univ pe...
  • 42 篇 zhejiang univ pe...
  • 41 篇 chinese univ hon...
  • 39 篇 sensetime res pe...
  • 39 篇 stanford univ st...
  • 38 篇 swiss fed inst t...
  • 37 篇 carnegie mellon ...
  • 36 篇 swiss fed inst t...
  • 33 篇 natl univ singap...
  • 32 篇 yonsei univ
  • 32 篇 shanghai jiao to...
  • 30 篇 korea adv inst s...
  • 29 篇 univ chinese aca...
  • 28 篇 megvii technol p...
  • 28 篇 univ hong kong p...
  • 27 篇 alibaba grp peop...
  • 27 篇 tech univ munich...
  • 27 篇 adobe res san jo...

作者

  • 68 篇 timofte radu
  • 25 篇 van gool luc
  • 23 篇 zhang lei
  • 21 篇 sun jian
  • 17 篇 yang yi
  • 16 篇 tao dacheng
  • 16 篇 radu timofte
  • 15 篇 loy chen change
  • 15 篇 lee kyoung mu
  • 14 篇 fan haoqiang
  • 14 篇 wang xinchao
  • 14 篇 liu shuaicheng
  • 14 篇 pan jinshan
  • 14 篇 ji rongrong
  • 14 篇 zhang wei
  • 12 篇 li xin
  • 12 篇 liu yang
  • 12 篇 wang kai
  • 12 篇 chen wei-ting
  • 12 篇 khan fahad shahb...

语言

  • 3,855 篇 英文
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021"
3855 条 记 录,以下是3731-3740 订阅
排序:
Efficient Semantic Segmentation using Gradual Grouping  31
Efficient Semantic Segmentation using Gradual Grouping
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Vallurupalli, Nikitha Annamaneni, Sriharsha Varma, Girish Jawahar, C., V Mathew, Manu Nagori, Soyeb IIIT Hyderabad Kohli Ctr Intelligent Syst Ctr Visual Informat Technol Hyderabad Telangana India Texas Instruments Inc Bangalore Karnataka India
Deep CNNs for semantic segmentation have high memory and run time requirements. Various approaches have been proposed to make CNNs efficient like grouped, shuffled, depth-wise separable convolutions. We study the effe... 详细信息
来源: 评论
Pose-Guided R-CNN for Jersey Number recognition in Sports
Pose-Guided R-CNN for Jersey Number Recognition in Sports
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Hengyue Liu Bir Bhanu Center for Research in Intelligent Systems University of California
Recognizing player jersey number in sports match video streams is a challenging computer vision task. The human pose and view-point variations displayed in frames lead to many difficulties in recognizing the digits on... 详细信息
来源: 评论
A Fully Progressive Approach to Single-Image Super-Resolution  31
A Fully Progressive Approach to Single-Image Super-Resolutio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Yifan Perazzi, Federico McWilliams, Brian Sorkine-Hornung, Alexander Sorkine-Hornung, Olga Schroers, Christopher Swiss Fed Inst Technol Zurich Switzerland Disney Res Zurich Switzerland Oculus Menlo Pk CA USA
Recent deep learning approaches to single image super-resolution have achieved impressive results in terms of traditional error measures and perceptual quality. However, in each case it remains challenging to achieve ... 详细信息
来源: 评论
Real Photographs Denoising with Noise Domain Adaptation and Attentive Generative Adversarial Network
Real Photographs Denoising with Noise Domain Adaptation and ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Kai Lin Thomas H. Li Shan Liu Ge Li School of Electronic and Computer Engineering Peking University Tencent America
Nowadays, deep convolutional neural networks (CNNs) based methods have achieved favorable performance in synthetic noisy image denoising, but they are very limited in real photographs denoising since it's hard to ... 详细信息
来源: 评论
Recurrent Segmentation for Variable Computational Budgets  31
Recurrent Segmentation for Variable Computational Budgets
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: McIntosh, Lane Maheswaranathan, Niru Sussillo, David Shlens, Jonathon Stanford Univ Stanford CA 94305 USA Google Brain Mountain View CA USA
State-of-the-art systems for semantic image segmentation use feed-forward pipelines with fixed computational costs. Building an image segmentation system that works across a range of computational budgets is challengi... 详细信息
来源: 评论
ComboGAN: Unrestrained Scalability for Image Domain Translation  31
ComboGAN: Unrestrained Scalability for Image Domain Translat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Anoosheh, Asha Agustsson, Eirikur Timofte, Radu Van Gool, Luc Swiss Fed Inst Technol D ITET Comp Vis Lab Zurich Switzerland Swiss Fed Inst Technol D ITET Zurich Switzerland Merantix Berlin Germany Katholieke Univ Leuven ESAT Leuven Belgium
The past year alone has seen unprecedented leaps in the area of learning-based image translation, namely CycleGAN, by Zhu et al. But experiments so far have been tailored to merely two domains at a time, and scaling t... 详细信息
来源: 评论
SUSiNet: See, Understand and Summarize it
SUSiNet: See, Understand and Summarize it
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Petros Koutras Petros Maragos National Technical University of Athens Greece
In this work we propose a multi-task spatio-temporal network, called SUSiNet, that can jointly tackle the spatio-temporal problems of saliency estimation, action recognition and video summarization. Our approach emplo... 详细信息
来源: 评论
Scene Understanding Networks for Autonomous Driving based on Around View Monitoring System  31
Scene Understanding Networks for Autonomous Driving based on...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Baek, JeongYeol Chelu, Ioana Veronica Iordache, Livia Paunescu, Vlad Ryu, HyunJoo Ghiuta, Alexandru Petreanu, Andrei Soh, YunSung Leica, Andrei Jeon, ByeongMoon LG Elect Convergence Ctr Seoul South Korea Arnia Software Bucharest Romania
Modern driver assistance systems rely on a wide range of sensors (RADAR, LIDAR, ultrasound and cameras) for scene understanding and prediction. These sensors are typically used for detecting traffic participants and s... 详细信息
来源: 评论
A Comparative Study of Real-time Semantic Segmentation for Autonomous Driving  31
A Comparative Study of Real-time Semantic Segmentation for A...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Siam, Mennatullah Gamal, Mostafa Abdel-Razek, Moemen Yogamani, Senthil Jagersand, Martin Zhang, Hong Univ Alberta Edmonton AB Canada Cairo Univ Giza Egypt Valeo Vis Syst Tuam Ireland
Semantic segmentation is a critical module in robotics related applications, especially autonomous driving. Most of the research on semantic segmentation is focused on improving the accuracy with less attention paid t... 详细信息
来源: 评论
Suppressing Model Overfitting for Image Super-Resolution Networks
Suppressing Model Overfitting for Image Super-Resolution Net...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Ruicheng Feng Jinjin Gu Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The School of Science and Engineering The Chinese University of Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论