咨询与建议

限定检索结果

文献类型

  • 3,854 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3,855 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,938 篇 工学
    • 2,846 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 141 篇 机械工程
    • 134 篇 光学工程
    • 43 篇 生物工程
    • 28 篇 信息与通信工程
    • 10 篇 控制科学与工程
    • 10 篇 交通运输工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,540 篇 医学
    • 1,540 篇 临床医学
  • 176 篇 理学
    • 137 篇 物理学
    • 44 篇 生物学
    • 30 篇 数学
    • 17 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 6 篇 法学
    • 4 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,497 篇 computer vision
  • 1,153 篇 pattern recognit...
  • 1,102 篇 training
  • 834 篇 conferences
  • 688 篇 computational mo...
  • 531 篇 visualization
  • 465 篇 computer archite...
  • 429 篇 benchmark testin...
  • 398 篇 semantics
  • 377 篇 three-dimensiona...
  • 362 篇 codes
  • 307 篇 feature extracti...
  • 297 篇 task analysis
  • 296 篇 deep learning
  • 262 篇 neural networks
  • 226 篇 image segmentati...
  • 221 篇 estimation
  • 218 篇 object detection
  • 212 篇 cameras
  • 205 篇 measurement

机构

  • 50 篇 univ sci & techn...
  • 47 篇 tsinghua univ pe...
  • 46 篇 peng cheng lab p...
  • 42 篇 zhejiang univ pe...
  • 41 篇 chinese univ hon...
  • 39 篇 stanford univ st...
  • 38 篇 swiss fed inst t...
  • 38 篇 sensetime res pe...
  • 37 篇 carnegie mellon ...
  • 36 篇 swiss fed inst t...
  • 33 篇 natl univ singap...
  • 32 篇 yonsei univ
  • 32 篇 shanghai jiao to...
  • 29 篇 univ chinese aca...
  • 29 篇 korea adv inst s...
  • 28 篇 megvii technol p...
  • 28 篇 univ hong kong p...
  • 28 篇 tech univ munich...
  • 27 篇 alibaba grp peop...
  • 26 篇 australian natl ...

作者

  • 68 篇 timofte radu
  • 25 篇 van gool luc
  • 23 篇 zhang lei
  • 21 篇 sun jian
  • 19 篇 radu timofte
  • 17 篇 yang yi
  • 16 篇 tao dacheng
  • 15 篇 loy chen change
  • 14 篇 fan haoqiang
  • 14 篇 wang xinchao
  • 14 篇 liu shuaicheng
  • 14 篇 lee kyoung mu
  • 14 篇 ji rongrong
  • 13 篇 huang feiyue
  • 13 篇 zhang wei
  • 12 篇 li xin
  • 12 篇 liu yang
  • 12 篇 wang kai
  • 12 篇 pan jinshan
  • 12 篇 lei lei

语言

  • 3,855 篇 英文
检索条件"任意字段=2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021"
3855 条 记 录,以下是81-90 订阅
排序:
Pano3D: A Holistic Benchmark and a Solid Baseline for 360° Depth Estimation
Pano3D: A Holistic Benchmark and a Solid Baseline for 360° ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Albanis, Georgios Zioulis, Nikolaos Drakoulis, Petros Gkitsas, Vasileios Sterzentsenko, Vladimiros Alvarez, Federico Zarpalas, Dimitrios Daras, Petros Ctr Res & Technol Hellas Thessaloniki Greece Univ Politecn Madrid Madrid Spain
Pano3D is a new benchmark for depth estimation from spherical panoramas. It aims to assess performance across all depth estimation traits, the primary direct depth estimation performance targeting precision and accura... 详细信息
来源: 评论
Sign Language Production: A Review
Sign Language Production: A Review
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rastgoo, Razieh Kiani, Kourosh Escalera, Sergio Sabokrou, Mohammad Semnan Univ Semnan Iran Inst Res Fundamental Sci IPM Tehran Iran Univ Barcelona Barcelona Spain Comp Vis Ctr Barcelona Spain
Sign Language is the dominant yet non-primary form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing commu... 详细信息
来源: 评论
Beyond VQA: Generating Multi-word Answers and Rationales to Visual Questions
Beyond VQA: Generating Multi-word Answers and Rationales to ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dua, Radhika Kancheti, Sai Srinivas Balasubramanian, Vineeth N. Indian Inst Technol Hyderabad Hyderabad India
Visual Question Answering is a multi-modal task that aims to measure high-level visual understanding. Contemporary VQA models are restrictive in the sense that answers are obtained via classification over a limited vo... 详细信息
来源: 评论
Engineering Sketch Generation for computer-Aided Design
Engineering Sketch Generation for Computer-Aided Design
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Willis, Karl D. D. Jayaraman, Pradeep Kumar Lambourne, Joseph G. Chu, Hang Pu, Yewen Autodesk Res Shanghai Peoples R China
Engineering sketches form the 2D basis of parametric computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch gener... 详细信息
来源: 评论
Manipulation Detection in Satellite Images Using vision Transformer
Manipulation Detection in Satellite Images Using Vision Tran...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Horvath, Janos Baireddy, Sriram Hao, Hanxiang Montserrat, Daniel Mas Delp, Edward J. Purdue Univ Sch Elect & Comp Engn Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
A growing number of commercial satellite companies provide easily accessible satellite imagery. Overhead imagery is used by numerous industries including agriculture, forestry, natural disaster analysis, and meteorolo... 详细信息
来源: 评论
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
DarkLight Networks for Action recognition in the Dark
DarkLight Networks for Action Recognition in the Dark
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Rui Chen, Jiajun Liang, Zixi Gao, Huaien Lin, Shan Guangzhou Xi Ma Informat Technol Co 101 Waihuan Xi Rd Guangzhou 510006 Guangdong Peoples R China
Human action recognition in the dark is a significant task with various applications, e.g., night surveillance and self-driving at night. However, the lack of video datasets for human actions in the dark hinders its d... 详细信息
来源: 评论
Cross-Domain Multi-task Learning for Object Detection and Saliency Estimation
Cross-Domain Multi-task Learning for Object Detection and Sa...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khattar, Apoorv Hegde, Srinidhi Hebbalaguppe, Ramya TCS Res Mumbai Maharashtra India
Multi-task learning (MTL) is a learning paradigm that aims at joint optimization of multiple tasks using a single neural network for better performance and generalization. In practice, MTL rests on the inherent assump... 详细信息
来源: 评论
How to Calibrate Your Event Camera
How to Calibrate Your Event Camera
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Muglikar, Manasi Gehrig, Mathias Gehrig, Daniel Scaramuzza, Davide Univ Zurich Dept Informat Zurich Switzerland Univ Zurich Dept Neuroinformat Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland
We propose a generic event camera calibration framework using image reconstruction. Instead of relying on blinking LED patterns or external screens, we show that neural-network-based image reconstruction is well suite... 详细信息
来源: 评论
Guidance Network with Staged Learning for Image enhancement
Guidance Network with Staged Learning for Image enhancement
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liang, Luming Zharkov, Ilya Amjadi, Faezeh Joze, Hamid Reza Vaezi Pradeep, Vivek Microsoft One Microsoft Way Redmond WA 98052 USA
Many important yet not fully resolved problems in computational photography and image enhancement, e.g. generating well-lit images from their low-light counterparts or producing RGB images from their RAW camera inputs... 详细信息
来源: 评论