咨询与建议

限定检索结果

文献类型

  • 674 篇 会议
  • 12 册 图书
  • 5 篇 期刊文献

馆藏范围

  • 691 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 451 篇 工学
    • 322 篇 计算机科学与技术...
    • 258 篇 软件工程
    • 196 篇 信息与通信工程
    • 138 篇 电气工程
    • 84 篇 生物工程
    • 72 篇 光学工程
    • 64 篇 生物医学工程(可授...
    • 34 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 22 篇 控制科学与工程
    • 19 篇 材料科学与工程(可...
    • 17 篇 仪器科学与技术
    • 13 篇 机械工程
    • 12 篇 安全科学与工程
    • 9 篇 动力工程及工程热...
    • 8 篇 交通运输工程
    • 6 篇 网络空间安全
  • 235 篇 理学
    • 110 篇 物理学
    • 87 篇 生物学
    • 85 篇 数学
    • 22 篇 化学
    • 19 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 104 篇 医学
    • 102 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 72 篇 管理学
    • 43 篇 图书情报与档案管...
    • 31 篇 管理科学与工程(可...
  • 6 篇 法学
  • 6 篇 教育学
    • 6 篇 教育学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 98 篇 signal processin...
  • 58 篇 image segmentati...
  • 58 篇 image processing
  • 54 篇 signal processin...
  • 43 篇 conferences
  • 41 篇 deep learning
  • 38 篇 image enhancemen...
  • 33 篇 image recognitio...
  • 29 篇 feature extracti...
  • 28 篇 training
  • 24 篇 image edge detec...
  • 24 篇 convolution
  • 24 篇 visualization
  • 24 篇 image color anal...
  • 24 篇 image reconstruc...
  • 22 篇 image coding
  • 22 篇 image classifica...
  • 20 篇 neural networks
  • 18 篇 robustness
  • 17 篇 object detection

机构

  • 6 篇 school of inform...
  • 6 篇 college of elect...
  • 5 篇 key laboratory o...
  • 5 篇 university of ch...
  • 5 篇 nanyang technol ...
  • 5 篇 school of mathem...
  • 4 篇 shanghai jiao to...
  • 4 篇 laboratory of be...
  • 4 篇 school of electr...
  • 3 篇 shanghai jiao to...
  • 3 篇 michigan state u...
  • 3 篇 college of mathe...
  • 3 篇 tsinghua shenzhe...
  • 3 篇 shanghai jiao to...
  • 3 篇 national laborat...
  • 2 篇 university of sc...
  • 2 篇 school of comput...
  • 2 篇 school of cyber ...
  • 2 篇 school of mathem...
  • 2 篇 huazhong univers...

作者

  • 6 篇 wang chao
  • 6 篇 yang chuansheng
  • 5 篇 yang yueting
  • 5 篇 wen bihan
  • 5 篇 yang jian
  • 4 篇 jian wang
  • 4 篇 tan anhui
  • 4 篇 anil kumar
  • 4 篇 bo feng
  • 4 篇 chao xu
  • 3 篇 ravishankar saip...
  • 3 篇 zhou jiantao
  • 3 篇 li min
  • 3 篇 zhai guangtao
  • 3 篇 nguyen trong-the
  • 3 篇 feng bo
  • 3 篇 parthasarathy ra...
  • 3 篇 xiaotao huang
  • 3 篇 wang liu
  • 3 篇 fan zhun

语言

  • 691 篇 英文
检索条件"任意字段=2021 International Conference on Advanced Algorithms and Signal Image Processing, AASIP 2021"
691 条 记 录,以下是81-90 订阅
排序:
An image retrieval method based on fusion of multiple features  3
An image retrieval method based on fusion of multiple featur...
收藏 引用
3rd international conference on advanced algorithms and signal image processing, aasip 2023
作者: Wang, Jiaojuan Dou, Hongbin Guo, Minghan Wang, Binkang School of Information Engineering Lanzhou City University Gansu730070 China Gansu Intellectual Property Protection Center Gansu730030 China School of Computer Science and Artificial Intelligence Lanzhou Institute of Technology Gansu730050 China
In image retrieval tasks, two main indicators are focused on: Accuracy and efficiency. In general, the more the number of features, the higher the retrieval accuracy but the lower efficiency. Focusing on ensuring retr... 详细信息
来源: 评论
Attention-based feature enhanced dehazing network
Attention-based feature enhanced dehazing network
收藏 引用
2021 international conference on advanced algorithms and signal image processing, aasip 2021
作者: Cheng, Yuanshun Tan, Anhui Yang, Chuansheng Yang, Yueting Wang, Chao Tianfu College of SWUFE Sichuan Mianyang621000 China School of Information Engineering Zhejiang Ocean University Zhejiang Zhoushan316022 China Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province Zhejiang Zhoushan316022 China School of Mathematics and Statistics Beihua University Jilin Jilin132013 China
Presence of haze in images obscures underlying information, which is undesirable in applications requiring accurate environment information. To recover such an image, a dehazing algorithm should enhance the feature in... 详细信息
来源: 评论
MULTI-SCALE MODEL DRIVEN SINGLE image DEHAZING
MULTI-SCALE MODEL DRIVEN SINGLE IMAGE DEHAZING
收藏 引用
IEEE international conference on image processing (ICIP)
作者: Li, Zhengguo Shu, Haiyan Inst Infocomm Res SRO Dept 1 Fusionopolis Way Singapore 138632 Singapore
Model driven single image dehazing was widely studied due to its broad applications. It is challenging to prevent noise from being amplified in sky region for the model driven dehazing algorithms. In this paper, a new... 详细信息
来源: 评论
New Ultrasound image Watermarking Enhancement algorithm for cardiovascular disease  6
New Ultrasound Image Watermarking Enhancement algorithm for ...
收藏 引用
6th IEEE international conference on signal processing, Computing and Control, ISPCC 2021
作者: Kumar, Prashant Gupta, Sachin Ratan, Rajeev MVN University Haryana Palwal India
The primary goal of this article is to implement a new space-frequency-domain picture enhancing method. algorithms often have low contrast, although algorithmic algorithms solve this issue. After that, the heuristic i... 详细信息
来源: 评论
Low-light image enhancement based on deep convolutional neural networks
Low-light image enhancement based on deep convolutional neur...
收藏 引用
2021 international conference on signal image processing and Communication, ICSIPC 2021
作者: Yong, Chen Dong, Chen The Key Laboratory of Industrial Internet of Things and Network Control Ministry of Education Chongqing University of Posts and Telecommunications Chongqing400065 China
A reference-free low-illumination image enhancement method based on deep convolutional neural networks is proposed to address the problem that low-illumination image enhancement algorithms do not take into account noi... 详细信息
来源: 评论
Performance Evaluation of Speech Enhancement of Single Acoustic signal Referring to image Information  5
Performance Evaluation of Speech Enhancement of Single Acous...
收藏 引用
5th international conference on Imaging, signal processing and Communications (ICISPC)
作者: Matsumoto, Mitsuharu Univ Electrocommun Dept Informat 1-5-1 Chofugaoka Chofu Tokyo 1828585 Japan
This paper presents performance evaluation of speech enhancement of an acoustic signal referring to image information. In recent years, we often see smart phones and tablets in everyday life. Smart phones and tablets ... 详细信息
来源: 评论
Edge detection algorithm of low SNR image based on mixed filtering
Edge detection algorithm of low SNR image based on mixed fil...
收藏 引用
2021 IEEE international conference on signal processing, Communications and Computing, ICSPCC 2021
作者: Qi, Tang Yi-Xuan, Sun Ke-Xin, Zhou Wen-Tian, Wang Xi'An University of Posts Telecommunication Xi'an China
Aiming at the available edge detection algorithms can not effectively extract the edge information for low SNR image, a new edge detection algorithm for low SNR image based on mixed filter is proposed in this paper. W... 详细信息
来源: 评论
A Comparison between AttnGAN and DF GAN: Text to image Synthesis  3
A Comparison between AttnGAN and DF GAN: Text to Image Synth...
收藏 引用
3rd international conference on signal processing and Communication (ICPSC)
作者: Sumi, Philo Sindhuja, S. Sureshkumar, S. Bannari Amman Inst Technol Dept Comp Sci & Engn Sathyamangalam India
Nowadays conversion from text to high resolution image is a challenging task due to its wide variety of application area. For text to image conversion almost all systems use Generative Adversarial Networks as the basi... 详细信息
来源: 评论
EMPIRICALLY ACCELERATING SCALED GRADIENT PROJECTION USING DEEP NEURAL NETWORK FOR INVERSE PROBLEMS IN image processing
EMPIRICALLY ACCELERATING SCALED GRADIENT PROJECTION USING DE...
收藏 引用
IEEE international conference on Acoustics, Speech and signal processing (ICASSP)
作者: Lee, Byung Hyun Chun, Se Young UNIST Grad Sch AI Seoul South Korea Seoul Natl Univ INMC Dept ECE Seoul South Korea
Recently, deep neural networks (DNNs) have shown advantages in accelerating optimization algorithms. One approach is to unfold finite number of iterations of conventional optimization algorithms and to learn parameter... 详细信息
来源: 评论
advanced deep learning enhancement algorithm based on retinex model guidance
Advanced deep learning enhancement algorithm based on retine...
收藏 引用
2021 international conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and signal processing Technology
作者: Zhang, Hangying Cao, Liangcai State key Laboratory of Precision Testing Technology and Instruments Department of Precision Instruments Tsinghua university Beijing100084 China
Traditional Retinex model-based image enhancement methods require careful design of constraints and parameters to handle this highly ill-conditioned decomposition. With the advancement of deep learning algorithms, low... 详细信息
来源: 评论