咨询与建议

限定检索结果

文献类型

  • 11,133 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,141 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,837 篇 工学
    • 7,396 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 426 篇 软件工程
    • 390 篇 电气工程
    • 240 篇 控制科学与工程
    • 99 篇 光学工程
    • 53 篇 生物工程
    • 37 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 12 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 8 篇 交通运输工程
    • 7 篇 电子科学与技术(可...
    • 4 篇 环境科学与工程(可...
  • 3,070 篇 医学
    • 3,068 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 4 篇 公共卫生与预防医...
  • 349 篇 理学
    • 200 篇 系统科学
    • 107 篇 物理学
    • 55 篇 生物学
    • 31 篇 数学
    • 15 篇 化学
    • 14 篇 统计学(可授理学、...
  • 34 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
    • 6 篇 作物学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 1 篇 军事学

主题

  • 5,441 篇 computer vision
  • 2,546 篇 training
  • 2,108 篇 pattern recognit...
  • 1,640 篇 computational mo...
  • 1,455 篇 visualization
  • 1,311 篇 three-dimensiona...
  • 1,078 篇 semantics
  • 985 篇 codes
  • 974 篇 benchmark testin...
  • 917 篇 computer archite...
  • 879 篇 deep learning
  • 765 篇 task analysis
  • 691 篇 feature extracti...
  • 570 篇 conferences
  • 530 篇 face recognition
  • 523 篇 neural networks
  • 511 篇 transformers
  • 474 篇 object detection
  • 469 篇 image segmentati...
  • 451 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 143 篇 univ chinese aca...
  • 143 篇 tsinghua univ pe...
  • 142 篇 carnegie mellon ...
  • 133 篇 chinese univ hon...
  • 120 篇 peng cheng lab p...
  • 105 篇 zhejiang univ pe...
  • 94 篇 sensetime res pe...
  • 93 篇 swiss fed inst t...
  • 88 篇 shanghai ai lab ...
  • 88 篇 tsinghua univers...
  • 84 篇 stanford univ st...
  • 82 篇 shanghai jiao to...
  • 79 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 74 篇 peng cheng labor...
  • 74 篇 australian natl ...
  • 73 篇 tech univ munich...
  • 71 篇 university of sc...

作者

  • 61 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 tao dacheng
  • 35 篇 loy chen change
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 26 篇 boxin shi
  • 25 篇 li xin
  • 25 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,131 篇 英文
  • 10 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022"
11141 条 记 录,以下是111-120 订阅
排序:
HumMUSS: Human Motion Understanding using State Space Models
HumMUSS: Human Motion Understanding using State Space Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mondal, Arnab Alletto, Stefano Tome, Denis Mila Montreal PQ Canada Apple Cupertino CA 95014 USA
Understanding human motion from video is essential for a range of applications, including pose estimation, mesh recovery and action recognition. While state-of-the-art methods predominantly rely on transformer-based a... 详细信息
来源: 评论
SHViT: Single-Head vision Transformer with Memory Efficient Macro Design
SHViT: Single-Head Vision Transformer with Memory Efficient ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yun, Seokju Ro, Youngmin Univ Seoul Machine Intelligence Lab Seoul South Korea
Recently, efficient vision Transformers have shown great performance with low latency on resource-constrained devices. Conventionally, they use 4x4 patch embeddings and a 4-stage structure at the macro level, while ut... 详细信息
来源: 评论
PEEKABOO: Interactive Video Generation via Masked-Diffusion
PEEKABOO: Interactive Video Generation via Masked-Diffusion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jain, Yash Nasery, Anshul Vineet, Vibhav Behl, Harkirat Microsoft Redmond WA 98052 USA Univ Washington Seattle WA USA
Modern video generation models like Sora have achieved remarkable success in producing high-quality videos. However, a significant limitation is their inability to offer interactive control to users, a feature that pr... 详细信息
来源: 评论
Open-Set Domain Adaptation for Semantic Segmentation
Open-Set Domain Adaptation for Semantic Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Choe, Seun-An Shin, Ah-Hyung Park, Keon-Hee Choi, Jinwoo Park, Gyeong-Moon Kyung Hee Univ Yongin South Korea
Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer the pixel-wise knowledge from the labeled source domain to the unlabeled target domain. However, current UDA methods typically assume a s... 详细信息
来源: 评论
VLP: vision Language Planning for Autonomous Driving
VLP: Vision Language Planning for Autonomous Driving
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pan, Chenbin Yaman, Burhaneddin Nesti, Tommaso Mallik, Abhirup Allievi, Alessandro G. Velipasalar, Senem Rene, Liu Syracuse Univ Syracuse NY USA Bosch Res North Amer & Bosch Ctr Artificial Intel Sunnyvale CA 94085 USA
Autonomous driving is a complex and challenging task that aims at safe motion planning through scene understanding and reasoning. While vision-only autonomous driving methods have recently achieved notable performance... 详细信息
来源: 评论
HEAL-SWIN: A vision Transformer On The Sphere
HEAL-SWIN: A Vision Transformer On The Sphere
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Carlsson, Oscar Gerken, Jan E. Linander, Hampus Spiess, Heiner Ohlsson, Fredrik Petersson, Christoffer Persson, Daniel Univ Gothenburg Chalmers Univ Technol Dept Math Sci SE-41296 Gothenburg Sweden Tech Univ Berlin Neural Informat Proc Sci Intelligence DE-10623 Berlin Germany Umea Univ Dept Math & Math Stat Umea degrees SE-90187 Umea Sweden Zenseact SE-41756 Gothenburg Sweden
High-resolution wide-angle fisheye images are becoming more and more important for robotics applications such as autonomous driving. However, using ordinary convolutional neural networks or vision transformers on this... 详细信息
来源: 评论
Contrasting intra-modal and ranking cross-modal hard negatives to enhance visio-linguistic compositional understanding
Contrasting intra-modal and ranking cross-modal hard negativ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Le Awal, Rabiul Agrawal, Aishwarya Mila Quebec AI Inst Montreal PQ Canada Univ Montreal Montreal PQ Canada Canada CIFAR AI Chair Montreal PQ Canada
vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-... 详细信息
来源: 评论
Object recognition as Next Token Prediction
Object Recognition as Next Token Prediction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yue, Kaiyu Chen, Bor-Chun Geiping, Jonas Li, Hengduo Goldstein, Tom Lim, Ser-Nam Meta Menlo Pk CA 94025 USA Univ Maryland College Pk MD 20742 USA ELLIS Inst Tubingen Germany MPI IS Tubingen Tubingen Germany Univ Cent Florida Orlando FL 32816 USA Meta AI Menlo Pk CA USA
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this ... 详细信息
来源: 评论
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
Chat-UniVi: Unified Visual Representation Empowers Large Lan...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jin, Peng Takanobu, Ryuichi Zhang, Wancai Cao, Xiaochun Yuan, Li Peking Univ Sch Elect & Comp Engn Shenzhen Peoples R China Peng Cheng Lab Shenzhen Peoples R China Peking Univ Ai Sci AI4S Preferred Program Shenzhen Grad Sch Shenzhen Peoples R China Nari Technol Co Ltd Beijing Peoples R China Sun Yat Sen Univ Sch Cyber Sci & Tech Shenzhen Campus Shenzhen Peoples R China
Large language models have demonstrated impressive universal capabilities across a wide range of open-ended tasks and have extended their utility to encompass multi-modal conversations. However, existing methods encou... 详细信息
来源: 评论
LAFS: Landmark-based Facial Self-supervised Learning for Face recognition
LAFS: Landmark-based Facial Self-supervised Learning for Fac...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Zhonglin Feng, Chen Patras, Ioannis Tzimiropoulos, Georgios Queen Mary Univ London London England
In this work we focus on learning facial representations that can be adapted to train effective face recognition models, particularly in the absence of labels. Firstly, compared with existing labelled face datasets, a... 详细信息
来源: 评论