咨询与建议

限定检索结果

文献类型

  • 11,133 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,141 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,837 篇 工学
    • 7,396 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 426 篇 软件工程
    • 390 篇 电气工程
    • 240 篇 控制科学与工程
    • 99 篇 光学工程
    • 53 篇 生物工程
    • 37 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 12 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 8 篇 交通运输工程
    • 7 篇 电子科学与技术(可...
    • 4 篇 环境科学与工程(可...
  • 3,070 篇 医学
    • 3,068 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 4 篇 公共卫生与预防医...
  • 349 篇 理学
    • 200 篇 系统科学
    • 107 篇 物理学
    • 55 篇 生物学
    • 31 篇 数学
    • 15 篇 化学
    • 14 篇 统计学(可授理学、...
  • 34 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
    • 6 篇 作物学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 1 篇 军事学

主题

  • 5,441 篇 computer vision
  • 2,546 篇 training
  • 2,108 篇 pattern recognit...
  • 1,640 篇 computational mo...
  • 1,455 篇 visualization
  • 1,311 篇 three-dimensiona...
  • 1,078 篇 semantics
  • 985 篇 codes
  • 974 篇 benchmark testin...
  • 917 篇 computer archite...
  • 879 篇 deep learning
  • 765 篇 task analysis
  • 691 篇 feature extracti...
  • 570 篇 conferences
  • 530 篇 face recognition
  • 523 篇 neural networks
  • 511 篇 transformers
  • 474 篇 object detection
  • 469 篇 image segmentati...
  • 451 篇 cameras

机构

  • 169 篇 univ sci & techn...
  • 143 篇 univ chinese aca...
  • 143 篇 tsinghua univ pe...
  • 142 篇 carnegie mellon ...
  • 133 篇 chinese univ hon...
  • 120 篇 peng cheng lab p...
  • 105 篇 zhejiang univ pe...
  • 94 篇 sensetime res pe...
  • 93 篇 swiss fed inst t...
  • 88 篇 shanghai ai lab ...
  • 88 篇 tsinghua univers...
  • 84 篇 stanford univ st...
  • 82 篇 shanghai jiao to...
  • 79 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 74 篇 peng cheng labor...
  • 74 篇 australian natl ...
  • 73 篇 tech univ munich...
  • 71 篇 university of sc...

作者

  • 61 篇 timofte radu
  • 60 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 36 篇 tao dacheng
  • 35 篇 loy chen change
  • 31 篇 liu yang
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 chen chen
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 26 篇 boxin shi
  • 25 篇 li xin
  • 25 篇 pollefeys marc
  • 24 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,131 篇 英文
  • 10 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022"
11141 条 记 录,以下是4891-4900 订阅
排序:
Sketch, Ground, and Refine: Top-Down Dense Video Captioning
Sketch, Ground, and Refine: Top-Down Dense Video Captioning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Deng, Chaorui Chen, Shizhe Chen, Da He, Yuan Wu, Qi Univ Adelaide Adelaide SA Australia INRIA Rocquencourt France Alibaba Grp Hangzhou Zhejiang Peoples R China
The dense video captioning task aims to detect and describe a sequence of events in a video for detailed and coherent storytelling. Previous works mainly adopt a "detect-then-describe" framework, which first... 详细信息
来源: 评论
X-MAN: Explaining multiple sources of anomalies in video
X-MAN: Explaining multiple sources of anomalies in video
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Szymanowicz, Stanislaw Charles, James Cipolla, Roberto Univ Cambridge Cambridge England
Our objective is to detect anomalies in video while also automatically explaining the reason behind the detector's response. In a practical sense, explainability is crucial for this task as the required response t... 详细信息
来源: 评论
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing
Boosting Adversarial Robustness using Feature Level Stochast...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Addepalli, Sravanti Jain, Samyak Sriramanan, Gaurang Babu, R. Venkatesh Indian Inst Sci Video Analyt Lab Dept Computat & Data Sci Bangalore Karnataka India
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-of-the-art defenses is far from the requirements in criti... 详细信息
来源: 评论
Hierarchical Correlation Clustering and Tree Preserving Embedding
Hierarchical Correlation Clustering and Tree Preserving Embe...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Morteza Haghir Chehreghani Mostafa Haghir Chehreghani Chalmers University of Technology Gothenburg Sweden Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
We propose a hierarchical correlation clustering method that extends the well-known correlation clustering to produce hierarchical clusters applicable to both positive and negative pairwise dissimilarities. Then, in t... 详细信息
来源: 评论
SimPoE: Simulated Character Control for 3D Human Pose Estimation
SimPoE: Simulated Character Control for 3D Human Pose Estima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yuan, Ye Wei, Shih-En Simon, Tomas Kitani, Kris Saragih, Jason Carnegie Mellon Univ Pittsburgh PA 15213 USA Facebook Real Labs Redmond WA USA
Accurate estimation of 3D human motion from monocular video requires modeling both kinematics (body motion without physical forces) and dynamics (motion with physical forces). To demonstrate this, we present SimPoE, a... 详细信息
来源: 评论
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology
Topology-Guided Multi-Class Cell Context Generation for Digi...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Shahira Abousamra Rajarsi Gupta Tahsin Kurc Dimitris Samaras Joel Saltz Chao Chen Department of Computer Science Stony Brook University USA Department of Biomedical Informatics Stony Brook University USA
In digital pathology, the spatial context of cells is important for cell classification, cancer diagnosis and prognosis. To model such complex cell context, however, is challenging. Cells form different mixtures, line...
来源: 评论
Generalizing Face Forgery Detection with High-frequency Features
Generalizing Face Forgery Detection with High-frequency Feat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Luo, Yuchen Zhang, Yong Yan, Junchi Liu, Wei Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China Shanghai Jiao Tong Univ MoE Key Lab Artificial Intelligence AI Inst Shanghai Peoples R China Tencent AI Lab Bellevue WA USA Tencent Data Platform Shenzhen Peoples R China
Current face forgery detection methods achieve high accuracy under the within-database scenario where training and testing forgeries are synthesized by the same algorithm. However, few of them gain satisfying performa... 详细信息
来源: 评论
Event-driven Re-Id: A New Benchmark and Method Towards Privacy-Preserving Person Re-Identification
Event-driven Re-Id: A New Benchmark and Method Towards Priva...
收藏 引用
22nd ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Ahmad, Shafiq Scarpellini, Gianluca Morerio, Pietro Del Bue, Alessio Univ Genoa Genoa Italy Ist Italino Tecnol Pattern Anal & Comp Vis PAVIS Genoa Italy Ist Italiano Tecnol Visual Geometry & Modelling VGM Genoa Italy
The large-scale use of surveillance cameras in public spaces raised severe concerns about an individual privacy breach. Introducing privacy and security in video surveillance systems, primarily in person re-identifica... 详细信息
来源: 评论
DeepACG: Co-Saliency Detection via Semantic-aware Contrast Gromov-Wasserstein Distance
DeepACG: Co-Saliency Detection via Semantic-aware Contrast G...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Kaihua Dong, Mingliang Liu, Bo Yuan, Xiao-Tong Liu, Qingshan Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Sch Automat Nanjing Peoples R China JD Digits Mountain View CA 94043 USA
The objective of co-saliency detection is to segment the co-occurring salient objects in a group of images. To address this task, we introduce a new deep network architecture via semantic-aware contrast Gromov-Wassers... 详细信息
来源: 评论