咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是191-200 订阅
排序:
Multi-encoder Network for Parameter Reduction of a Kernel-based Interpolation Architecture
Multi-encoder Network for Parameter Reduction of a Kernel-ba...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khalifeh, Issa Blanch, Marc Gorriz Izquierdo, Ebroul Mrak, Marta British Broadcasting Corp London W12 7TQ England Queen Mary Univ London London E1 4NS England
Video frame interpolation involves the synthesis of new frames from existing ones. Convolutional neural networks (CNNs) have been at the forefront of the recent advances in this field. One popular CNN-based approach i... 详细信息
来源: 评论
AFRIFASHION1600: A Contemporary African Fashion Dataset for computer vision
AFRIFASHION1600: A Contemporary African Fashion Dataset for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Oyewusi, Wuraola Fisayo Adekanmbi, Olubayo Ibejih, Sharon Osakuade, Opeyemi Okoh, Ifeoma Salami, Mary Data Sci Nigeria Lagos Nigeria
This work presents AFRIFASHION1600, an openly accessible contemporary African fashion image dataset containing 1600 samples labelled into 8 classes representing some African fashion styles. Each sample is coloured and... 详细信息
来源: 评论
On Disentanglement and Mutual Information in Semi-Supervised Variational Auto-Encoders
On Disentanglement and Mutual Information in Semi-Supervised...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gordon Rodriguez, Elliott Columbia Univ Dept Stat New York NY 10027 USA
In the context of variational auto-encoders, learning disentangled latent variable representations remains a challenging problem. In this abstract, we consider the semi-supervised setting, in which the factors of vari... 详细信息
来源: 评论
Online Unsupervised Domain Adaptation for Person Re-identification
Online Unsupervised Domain Adaptation for Person Re-identifi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rami, Hamza Ospici, Matthieu Lathuiliere, Stephane Inst Polytech Paris Telecom Paris LTCI Paris France Atos London England
Unsupervised domain adaptation for person re-identification (Person Re-ID) is the task of transferring the learned knowledge on the labeled source domain to the unlabeled target domain. Most of the recent papers that ... 详细信息
来源: 评论
Multi-modal Aerial View Object Classification Challenge Results - PBVS 2022
Multi-modal Aerial View Object Classification Challenge Resu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Low, Spencer Nina, Oliver Sappa, Angel D. Blasch, Erik Brigham Young Univ Provo UT 84602 USA Air Force Res Lab Dayton OH USA ESPOL Polytech Univ Ecuador Comp Vision Ctr Guayaquil Ecuador Air Force Off Sci Res Arlington VA USA
This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into me... 详细信息
来源: 评论
An Effective Framework of Multi-Class Product Counting and recognition for Automated Retail Checkout
An Effective Framework of Multi-Class Product Counting and R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wan, Junfeng Qian, Shuhao Tian, Zihan Zhao, Yanyun Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China
As the field of computer vision grows, Automated Retail Checkout has become a highly anticipated development goal. The key of this task is to improve the accuracy rate. If there is an error, it will bring serious loss... 详细信息
来源: 评论
Rethinking the Self-Attention in vision Transformers
Rethinking the Self-Attention in Vision Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Kyungmin Wu, Bichen Dai, Xiaoliang Zhang, Peizhao Yan, Zhicheng Vajda, Peter Kim, Seon Yonsei Univ Seoul South Korea Facebook Menlo Pk CA 94025 USA
Self-attention is a corner stone for transformer models. However, our analysis shows that self-attention in vision transformer inference is extremely sparse. When applying a sparsity constraint, our experiments on ima... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking Based on Occlusion-aware and Inter-vehicle Information
Multi-Camera Vehicle Tracking Based on Occlusion-aware and I...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yuming Zhang, Xiaochun Zhang, Bingzhen Zhang, Xiaoyong Wang, Sen Xu, Jianrong Shenzhen Urban Transport Planning Ctr Co Ltd Shenzhen Peoples R China
With the demands of analyzing and predicting traffic flow for applications in smart cities, Multi-Target Multi-Camera vehicle Tracking(MTMCT) at the city scale has become a fundamental problem. The MTMCT is challengin... 详细信息
来源: 评论
Dress Code: High-Resolution Multi-Category Virtual Try-On
Dress Code: High-Resolution Multi-Category Virtual Try-On
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Morelli, Davide Fincato, Matteo Cornia, Marcella Landi, Federico Cesari, Fabio Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy YOOX NET A PORTER GRP Milan Italy
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Existing literature focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglec... 详细信息
来源: 评论
OpenSentinelMap: A Large-Scale Land Use Dataset using OpenStreetMap and Sentinel-2 Imagery
OpenSentinelMap: A Large-Scale Land Use Dataset using OpenSt...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Johnson, Noah Treible, Wayne Crispell, Daniel Vis Syst Inc Riverside RI 02915 USA
Remote sensing data is plentiful, but downloading, organizing, and transforming large amounts of data into a format readily usable by modern machine learning methods is a challenging and labor-intensive task. We prese... 详细信息
来源: 评论