咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3051-3060 订阅
排序:
Sensor Equivariance: A Framework for Semantic Segmentation with Diverse Camera Models
Sensor Equivariance: A Framework for Semantic Segmentation w...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Hannes Reichert Manuel Hetzel Andreas Hubert Konrad Doll Bernhard Sick University of Applied Sciences Aschaffenburg Germany University of Kassel Germany
Objects are represented differently in projection-based sensors such as cameras depending on sensor resolution, field of view, and distortion, leading to distorted physical and geometric properties. As a result, senso... 详细信息
来源: 评论
MobileViG: Graph-Based Sparse Attention for Mobile vision Applications
MobileViG: Graph-Based Sparse Attention for Mobile Vision Ap...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Mustafa Munir William Avery Radu Marculescu The University of Texas at Austin
Traditionally, convolutional neural networks (CNN) and vision transformers (ViT) have dominated computer vision. However, recently proposed vision graph neural networks (ViG) provide a new avenue for exploration. Unfo...
来源: 评论
AIS 2024 Challenge on Video Quality Assessment of User-Generated Content: Methods and Results
AIS 2024 Challenge on Video Quality Assessment of User-Gener...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Marcos V. Conde Saman Zadtootaghaj Nabajeet Barman Radu Timofte Chenlong He Qi Zheng Ruoxi Zhu Zhengzhong Tu Haiqiang Wang Xiangguang Chen Wenhui Meng Xiang Pan Huiying Shi Han Zhu Xiaozhong Xu Lei Sun Zhenzhong Chen Shan Liu Zicheng Zhang Haoning Wu Yingjie Zhou Chunyi Li Xiaohong Liu Weisi Lin Guangtao Zhai Wei Sun Yuqin Cao Yanwei Jiang Jun Jia Zhichao Zhang Zijian Chen Weixia Zhang Xiongkuo Min Steve Göring Zihao Qi Chen Feng CAIDAS & IFI Computer Vision Lab. University of Würzburg Sony Interactive Entertainment FTG
This paper reviews the AIS 2024 Video Quality Assessment (VQA) Challenge, focused on User-Generated Content (UGC). The aim of this challenge is to gather deep learning-based methods capable of estimating the perceptua... 详细信息
来源: 评论
Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble
Divide and Conquer: High-Resolution Industrial Anomaly Detec...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Blaž Rolih Dick Ameln Ashwin Vaidya Samet Akcay Faculty of Computer and Information Science University of Ljubljana Intel
Industrial anomaly detection is an important task within computer vision with a wide range of practical use cases. The small size of anomalous regions in many real-world datasets necessitates processing the images at ... 详细信息
来源: 评论
Fully Test-time Adaptation for Object Detection
Fully Test-time Adaptation for Object Detection
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xiaoqian Ruan Wei Tang University of Illinois Chicago
Though the object detection performance on standard benchmarks has been improved drastically in the last decade, current object detectors are often vulnerable to domain shift between the training data and testing imag... 详细信息
来源: 评论
Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Survey
Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Sur...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Nicolas Chahine Marcos V. Conde Daniela Carfora Gabriel Pacianotto Benoit Pochon Sira Ferradans Radu Timofte Zhichao Duan Xinrui Xu Yipo Huang Quan Yuan Xiangfei Sheng Zhichao Yang Leida Li Haotian Fan Fangyuan Kong Yifang Xu Wei Sun Weixia Zhang Yanwei Jiang Haoning Wu Zicheng Zhang Jun Jia Yingjie Zhou Zhongpeng Ji Xiongkuo Min Weisi Lin Guangtao Zhai Xiaoqi Wang Junqi Liu Zixi Guo Yun Zhang Zewen Chen Wen Wang Juan Wang Bing Li DXOMARK CAIDAS & IFI Computer Vision Lab University of Würzburg Xidian University ByteDance Inc Shanghai Jiao Tong University Nanyang Technological University Huawei School of Electronics and Communication Engineering Sun Yat-sen University China State Key Laboratory of Multimodal Artificial Intelligence Systems CASIA School of Artificial Intelligence University of Chinese Academy of Sciences Beijing Jiaotong University
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results. This challenge aims to obtain an efficient deep neural network capable of estimating the percep... 详细信息
来源: 评论
SAM-PM: Enhancing Video Camouflaged Object Detection using Spatio-Temporal Attention
SAM-PM: Enhancing Video Camouflaged Object Detection using S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Muhammad Nawfal Meeran Gokul Adethya T Bhanu Pratyush Mantha National Institute of Technology Tiruchirappalli
In the domain of large foundation models, the Segment Anything Model (SAM) has gained notable recognition for its exceptional performance in image segmentation. However, tackling the video camouflage object detection ... 详细信息
来源: 评论
Domain Targeted Synthetic Plant Style Transfer using Stable Diffusion, LoRA and ControlNet
Domain Targeted Synthetic Plant Style Transfer using Stable ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zane K. J. Hartley Rob J. Lind Michael P. Pound Andrew P. French University of Nottingham Syngenta Jealott’s Hill International Research Centre
Synthetic images can help alleviate much of the cost in the creation of training data for plant phenotyping-focused AI development. Synthetic-to-real style transfer is of particular interest to users of artificial dat... 详细信息
来源: 评论
Prompting Foundational Models for Omni-supervised Instance Segmentation
Prompting Foundational Models for Omni-supervised Instance S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Arnav M. Das Ritwick Chaudhry Kaustav Kundu Davide Modolo University of Washington Seattle AWS AI Labs
Pixel-level mask annotation costs are a major bottleneck in training deep neural networks for instance segmentation. Recent promptable foundation models like the Segment Anything Model (SAM) and GroundedDINO (GDino) h... 详细信息
来源: 评论
FewSOME: One-Class Few Shot Anomaly Detection with Siamese Networks
FewSOME: One-Class Few Shot Anomaly Detection with Siamese N...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Niamh Belton Misgina Tsighe Hagos Aonghus Lawlor Kathleen M. Curran Science Foundation Ireland Centre for Research Training in Machine Learning School of Medicine University College Dublin School of Computer Science University College Dublin Insight Centre for Data Analytics University College Dublin Dublin Ireland
Recent Anomaly Detection techniques have progressed the field considerably but at the cost of increasingly complex training pipelines. Such techniques require large amounts of training data, resulting in computational...
来源: 评论