咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3121-3130 订阅
排序:
Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Fast and Accurate Quantized Camera Scene Detection on Smartp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ignatov, Andrey Malivenko, Grigory Timofte, Radu Chen, Sheng Xia, Xin Liu, Zhaoyan Zhang, Yuwei Zhu, Feng Li, Jiashi Xiao, Xuefeng Tian, Yuan Wu, Xinglong Kyrkou, Christos Chen, Yixin Zhang, Zexin Peng, Yunbo Lin, Yue Dutta, Saikat Das, Sourya Dipta Shah, Nisarg A. Kumar, Himanshu Ge, Chao Wu, Pei-Lin Du, Jin-Hua Batutin, Andrew Federico, Juan Pablo Lyda, Konrad Khojoyan, Levon Thanki, Abhishek Paul, Sayak Siddiqui, Shahid Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland AI Witchlabs Lausanne Switzerland ByteDance Inc Beijing Peoples R China Univ Cyprus KIOS Res & Innovat Ctr Excellence Nicosia Cyprus Netease Games AI Lab Beijing Peoples R China Indian Inst Technol Madras Chennai Tamil Nadu India Jadavpur Univ Kolkata India Indian Inst Technol Jodhpur Karwar India Chinese Acad Sci Inst Automat Nanjing Artificial Intelligence Chip Res Beijing Peoples R China DataArt Inc New York NY USA PyImageSearch Mumbai Maharashtra India Univ Cyprus KIOS Ctr Excellence Nicosia Cyprus
Camera scene detection is among the most popular computer vision problem on smartphones. While many custom solutions were developed for this task by phone vendors, none of the designed models were available publicly u... 详细信息
来源: 评论
Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Models
Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Mod...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Guihong LiM Hsiang Hsu Chun-Fu Richard Chen Radu Marculescu The University of Texas at Austin USA Global Technology Applied Research JPMorgan Chase USA
The rapid growth of machine learning has spurred legislative initiatives such as "the Right to be Forgotten," allowing users to request data removal. In response, machine unlearning proposes the selective re... 详细信息
来源: 评论
Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images.
Dr-SAM: An End-to-End Framework for Vascular Segmentation, D...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Vazgen Zohranyan Vagner Navasardyan Hayk Navasardyan Jan Borggrefe Shant Navasardyan Yerevan State University (YSU) ServiceTitan Inc. Ruhr-Universität Bochum (RUB) Johannes Wesling University Hospital Department of Radiology Neuroradiology and Nuclear Medicine Synopsys Armenia CJSC Picsart AI Research (PAIR)
Recent advancements in AI have significantly transformed medical imaging, particularly in angiography, by enhancing diagnostic precision and patient care. However existing works are limited in analyzing the aorta and ... 详细信息
来源: 评论
Monitoring Social Insect Activity with Minimal Human Supervision
Monitoring Social Insect Activity with Minimal Human Supervi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Tarun Sharma Julian M. Wagner Sara Beery William B. Dickson Michael H. Dickinson Joseph Parker California Institute of Technology USA MIT USA
Tracking the behavior of animals and their group dynamics in nature offers a crucial look into the delicate ecological networks that compose wildlife diversity. The velvety tree ant (Liometopum occidentale) is an ecol... 详细信息
来源: 评论
PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
PitcherNet: Powering the Moneyball Evolution in Baseball Vid...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jerrin Bright Bavesh Balaji Yuhao Chen David A Clausi John S Zelek University of Waterloo Waterloo Canada
In the high-stakes world of baseball, every nuance of a pitcher’s mechanics holds the key to maximizing performance and minimizing runs. Traditional analysis methods often rely on pre-recorded offline numerical data,... 详细信息
来源: 评论
Hairy Ground Truth Enhancement for Semantic Segmentation
Hairy Ground Truth Enhancement for Semantic Segmentation
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Sophie Fischer Irina Voiculescu Department of Computer Science Oxford University
Semantic segmentation is a key task within applications of machine learning for medical imaging, requiring large amounts of medical scans annotated by clinicians. The high cost of data annotation means that models nee... 详细信息
来源: 评论
Multi-view Semantic Information Guidance for Light Field Image Segmentation
Multi-view Semantic Information Guidance for Light Field Ima...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yiming Li Ruixuan Cong Sizhe Wang Mingyuan Zhao Yang Zhang Fangping Li Hao Sheng State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing P.R.China Beihang Hangzhou Innovation Institute Yuhang Xixi Octagon City Hangzhou P.R.China College of Information Science and Technology Beijing University of Chemical Technology Beijing P.R.China Faculty of Applied Sciences Macao Polytechnic University Macao SAR P.R.China
One of the great important fields of computer vision is semantic segmentation. As for single image semantic segmentation, due to limited available information, it appears poor performance when the occlusion and simila...
来源: 评论
T2VBench: Benchmarking Temporal Dynamics for Text-to-Video Generation
T2VBench: Benchmarking Temporal Dynamics for Text-to-Video G...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Pengliang Ji Chuyang Xiao Huilin Tai Mingxiao Huo Carnegie Mellon University ShanghaiTech University McGill University
While text-to-video (T2V) generative models produce exceptionally realistic videos, they lack a comprehensive evaluation across the temporal dimension, with a limited focus on basic dynamics including camera transitio... 详细信息
来源: 评论
Recursions Are All You Need: Towards Efficient Deep Unfolding Networks
Recursions Are All You Need: Towards Efficient Deep Unfoldin...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Rawwad Alhejaili Motaz Alfarraj Hamzah Luqman Ali Al-Shaikhi Electrical Engineering Department King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia SDAIA-KFUPM Joint Research Center for Artificial Intelligence King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia Information and Computer Science Department King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
The use of deep unfolding networks in compressive sensing (CS) has seen wide success as they provide both simplicity and interpretability. However, since most deep unfolding networks are iterative, this incurs signifi...
来源: 评论
CUE-Net: Violence Detection Video Analytics with Spatial Cropping, Enhanced UniformerV2 and Modified Efficient Additive Attention
CUE-Net: Violence Detection Video Analytics with Spatial Cro...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Damith Chamalke Senadeera Xiaoyun Yang Dimitrios Kollias Gregory Slabaugh School of Electronic Engineering and Computer Science Queen Mary University of London UK Queen Mary’s Digital Environment Research Institute (DERI) London UK Remark AI UK Limited London UK
In this paper we introduce CUE-Net, a novel architecture designed for automated violence detection in video surveillance. As surveillance systems become more prevalent due to technological advances and decreasing cost... 详细信息
来源: 评论