咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3321-3330 订阅
排序:
Dedicated Inference Engine and Binary-Weight Neural Networks for Lightweight Instance Segmentation
Dedicated Inference Engine and Binary-Weight Neural Networks...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Tse-Wei Chen Wei Tao Dongyue Zhao Kazuhiro Mima Tadayuki Ito Kinya Osa Masami Kato Device Technology Development Headquarters Canon Inc. Tokyo Japan Canon Innovative Solution (Beijing) Co. Ltd. Beijing China
Binary-weight Neural Networks (BNNs), in which weights are binarized and activations are quantized, are employed to reduce computational costs of various kinds of applications. In this paper, a design methodology of h... 详细信息
来源: 评论
NTIRE 2023 Challenge on 360° Omnidirectional Image and Video Super-Resolution: Datasets, Methods and Results
NTIRE 2023 Challenge on 360° Omnidirectional Image and Vide...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Cao, Mingdeng Mou, Chong Yu, Fanghua Wang, Xintao Zheng, Yinqiang Zhang, Jian Dong, Chao Li, Gen Shan, Ying Timofte, Radu Sun, Xiaopeng Li, Weiqi Sheng, Xuhan Chen, Bin Ma, Haoyu Cheng, Ming Zhao, Shijie Huang, Huaibo Zhou, Xiaoqiang Ai, Yuang He, Ran Wu, Renlong Yang, Yi Zhang, Zhilu Zhang, Shuohao Li, Junyi Chen, Yunjin Ren, Dongwei Zuo, Wangmeng Yang, Hao-Hsiang Chen, Yi-Chung Huang, Zhi-Kai Chen, Wei-Ting Chiang, Yuan-Chun Chang, Hua-En Chen, I.-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Zhang, Zebin Zhang, Jiaqi Wang, Yuhui Cui, Shuhao Huang, Junshi Zhu, Li Tian, Shuman Yu, Wei Luo, Bingchun Cui, Wanwan Xu, Tianyu Li, Chunyang Bao, Long Sun, Heng Zhang, Zhenyu Wang, Qian The University of Tokyo Japan Arc Lab Tencent Pcg China Peking University China Shenzhen Institute of Advanced Technology Cas China Platform Technologies Tencent Online Video China Computer Vision Lab Ifi & Caidas University of Würzburg Germany ByteDance China Peking University Shenzhen Graduate School China Mais&cripac Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China University of Science and Technology of China China Beijing Institute of Technology China School of Information Science and Technology ShanghaiTech University China Harbin Institute of Technology China Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States ShanghaiTech University China Meituan China Xiaomi Inc
This report introduces two high-quality datasets Flickr360 and ODV360 for omnidirectional image and video super-resolution, respectively, and reports the NTIRE 2023 challenge on 360° omnidirectional image and vid... 详细信息
来源: 评论
Cross-Temporal Spectrogram Autoencoder (CTSAE): Unsupervised Dimensionality Reduction for Clustering Gravitational Wave Glitches
Cross-Temporal Spectrogram Autoencoder (CTSAE): Unsupervised...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yi Li Yunan Wu Aggelos K. Katsaggelos The Department of Computer Science Northwestern University Evanston IL The Department of Electrical Computer Engineering Northwestern University Evanston IL
The advancement of The Laser Interferometer Gravitational-Wave Observatory (LIGO) has significantly enhanced the feasibility and reliability of gravitational wave detection. However, LIGO’s high sensitivity makes it ... 详细信息
来源: 评论
NTIRE 2021 Learning the Super-Resolution Space Challenge
NTIRE 2021 Learning the Super-Resolution Space Challenge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Busch, Christoph Chen, Yang Cheng, Jian Chudasama, Vishal Gang, Ruipeng Gao, Shangqi Gao, Kun Gong, Laiyun Han, Qingrui Huang, Chao Jin, Zhi Jo, Younghyun Kim, Seon Joo Kim, Younggeun Lee, Seungjun Lei, Yuchen Li, Chu-Tak Li, Chenghua Li, Ke Liu, Zhi-Song Liu, Youming Nan, Nan Park, Seung-Ho Patel, Heena Peng, Shichong Prajapati, Kalpesh Qi, Haoran Raja, Kiran Ramachandra, Raghavendra Siu, Wan-Chi Son, Donghee Song, Ruixia Upla, Kishor Wang, Li-Wen Wang, Yatian Wang, Junwei Wu, Qianyu Xu, Xinhua Yang, Sejong Yuan, Zhen Zhang, Liting Zhang, Huanrong Zhang, Junkai Zhang, Yifan Zhang, Zhenzhou Zhou, Hangqi Zhu, Aichun Zhuang, Xiahai Zou, Jiaxin Swiss Fed Inst Technol Zurich Switzerland Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Zhejiang Univ Hangzhou Peoples R China NetEaseYunXin Beijing Peoples R China Yonsei Univ Seoul South Korea Seoul Natl Univ Seoul South Korea Univ Ulsan Coll Med Asan Med Ctr Ulsan South Korea Lomin Inc Portland OR USA Fudan Univ Shanghai Peoples R China Simon Fraser Univ Burnaby BC Canada Caritas Inst Higher Educ Hong Kong Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China North China Univ Technol Beijing Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China CASIA Beijing Peoples R China NRTA Beijing Peoples R China NCUT Beijing Peoples R China Nanjing Tech Univ Sch Comp Sci & Technol Nanjing Peoples R China Southeast Univ Lab Image Sci & Technol Nanjing Peoples R China SVNIT Surat Gujarat India NTNU Trondheim Norway
This paper reviews the NTIRE 2021 challenge on learning the super-Resolution space. It focuses on the participating methods and final results. The challenge addresses the problem of learning a model capable of predict... 详细信息
来源: 评论
DMR: Disentangling Marginal Representations for Out-of-Distribution Detection
DMR: Disentangling Marginal Representations for Out-of-Distr...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Dasol Choi Dongbin Na MODULABS Yonsei University Pohang University of Science and Technology
Out-of-Distribution (OOD) detection is crucial for the reliable deployment of deep-learning applications. When a given input image does not belong to any categories of the deployed classification model, the classifica... 详细信息
来源: 评论
Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs
Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speec...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Uttaran Bhattacharya Aniket Bera Dinesh Manocha Adobe Inc. San Jose CA USA Purdue University West Lafayette IN USA University of Maryland College Park MD USA
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approac... 详细信息
来源: 评论
Towards Efficient Machine Unlearning with Data Augmentation: Guided Loss-Increasing (GLI) to Prevent the Catastrophic Model Utility Drop
Towards Efficient Machine Unlearning with Data Augmentation:...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Dasol Choi Soora Choi Eunsun Lee Jinwoo Seo Dongbin Na Yonsei University MODULABS Chung Ang University Kyung Hee University Millennialsworks Inc. POSTECH
Machine unlearning algorithms aim to make a model forget specific data that might be used in the training phase. To solve this problem, various studies have adopted loss-increasing methods. For example, some unlearnin... 详细信息
来源: 评论
Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach
Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly G...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Ayush K. Rai Tarun Krishna Feiyan Hu Alexandru Drimbarean Kevin McGuinness Alan F. Smeaton Noel E. O’Connor Insight SFI Centre for Data Analytics Dublin City University Tobii Corporation Galway
Video Anomaly Detection (VAD) is an open-set recognition task, which is usually formulated as a one-class classification (OCC) problem, where training data is comprised of videos with normal instances while test data ... 详细信息
来源: 评论
FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection
FishEye8K: A Benchmark and Dataset for Fisheye Camera Object...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Munkhjargal Gochoo Munkh-Erdene Otgonbold Erkhembayar Ganbold Jun-Wei Hsieh Ming-Ching Chang Ping-Yang Chen Byambaa Dorj Hamad Al Jassmi Ganzorig Batnasan Fady Alnajjar Mohammed Abduljabbar Fang-Pang Lin Department of Computer Science and Software Engineering United Arab Emirates University UAE Emirates Center for Mobility Research United Arab Emirates University UAE College of AI and Green Energy National Yang Ming Chiao Tung University Taiwan University at Albany — State University of New York NY USA Department of Computer Science National Yang Ming Chiao Tung University Taiwan Mongolian University of Science and Technology Mongolia National Center for High-Performance Computing Taiwan
With the advance of AI, road object detection has been a prominent topic in computer vision, mostly using perspective cameras. Fisheye lens provides omnidirectional wide coverage for using fewer cameras to monitor roa...
来源: 评论
Analyzing Participants’ Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features
Analyzing Participants’ Engagement during Online Meetings U...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Alexander Vedernikov Zhaodong Sun Virpi-Liisa Kykyri Mikko Pohjola Miriam Nokia Xiaobai Li Center for Machine Vision and Signal Analysis University of Oulu Finland Department of Psychology University of Jyväskylä Finland State Key Laboratory of Blockchain and Data Security Zhejiang University China
Engagement measurement finds application in healthcare, education, services. The use of physiological and behavioral features is viable, but the impracticality of traditional physiological measurement arises due to th... 详细信息
来源: 评论