咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3411-3420 订阅
排序:
Performance Evaluation of Segment Anything Model with Variational Prompting for Application to Non-Visible Spectrum Imagery
Performance Evaluation of Segment Anything Model with Variat...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yona Falinie A. Gaus Neelanjan Bhowmik Brian K. S. Isaac-Medina Toby P. Breckon Department of Computer Science Durham University UK Department of Engineering Durham University UK
The Segment Anything Model (SAM) is a deep neural network foundational model designed to perform instance segmentation which has gained significant popularity given its zero-shot segmentation ability. SAM operates by ... 详细信息
来源: 评论
Online Unsupervised Domain Adaptation for Person Re-identification
Online Unsupervised Domain Adaptation for Person Re-identifi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Hamza Rami Matthieu Ospici Sté phane Lathuiliè re LTCI T&#x00E9 l&#x00E9 com Paris Institut Polytechnique de Paris Atos
Unsupervised domain adaptation for person re-identification (Person Re-ID) is the task of transferring the learned knowledge on the labeled source domain to the unlabeled target domain. Most of the recent papers that ... 详细信息
来源: 评论
NTIRE 2023 Challenge on Stereo Image Super-Resolution: Methods and Results
NTIRE 2023 Challenge on Stereo Image Super-Resolution: Metho...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Wang, Longguang Guo, Yulan Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Cheng, Ming Ma, Haoyu Ma, Qiufang Sun, Xiaopeng Zhao, Shijie Sheng, Xuhan Ding, Yukan Sun, Ming Wen, Xing Zhang, Dafeng Li, Jia Wang, Fan Xie, Zheng He, Zongyao Qiu, Zidian Pan, Zilin Zhan, Zhihao Xian, Xingyuan Jin, Zhi Zhou, Yuanbo Deng, Wei Nie, Ruofeng Zhang, Jiajun Gao, Qinquan Tong, Tong Zhang, Kexin Zhang, Junpei Peng, Rui Ma, Yanbiao Jiao, Licheng Bai, Haoran Kong, Lingshun Pan, Jinshan Dong, Jiangxin Tang, Jinhui Cao, Pu Huang, Tianrui Yang, Lu Song, Qing Chen, Bingxin He, Chunhua Chen, Meiyun Guo, Zijie Luo, Shaojuan Cao, Chengzhi Wang, Kunyu Zhang, Fanrui Zhang, Qiang Mehta, Nancy Murala, Subrahmanyam Dudhane, Akshay Wang, Yujin Li, Lingen Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Chen, Junyang Li, Hao Shi, Yukai Yang, Zhijing Zou, Wenbin Zhang, Yunchen Jiang, Mingchao Yu, Zhongxin Tan, Ming Gao, Hongxia Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Chen, Jingxiang Yang, Bo Zhang, Xisheryl Li, Chenghua Yuan, Weijun Li, Zhan Deng, Ruting Zeng, Jintao Mahajan, Pulkit Mistry, Sahaj Chatterjee, Shreyas Jakhetiya, Vinit Subudhi, Badri Jaiswal, Sunil Zhang, Zhao Zheng, Huan Zhao, Suiyi Gao, Yangcheng Wei, Yanyan Wang, Bo Li, Gen Li, Aijin Sun, Lei Chen, Ke Tang, Congling Li, Yunzhe Chiang, Yuan-Chun Chen, Yi-Chung Huang, Zhi-Kai Yang, Hao-Hsiang Chen, I-Hsiang Kuo, Sy-Yen Wang, Yiheng Zhu, Gang Yang, Xingyi Liu, Songhua Jing, Yongcheng Hu, Xingyu Song, Jianwen Sun, Changming Sowmya, Arcot Park, Seung Ho Lei, Xiaoyan Wang, Jingchao Zhai, Chenbo Zhang, Yufei Cao, Weifeng Zhang, Wenlong Aviation University of Air Force China The Shenzhen Campus of Sun Yat-sen University Sun Yatsen University China National University of Defense Technology China Shanghai University China University of Electronic Science and Technology of China China University of Würzburg Germany ETH Zürich Switzerland ByteDance China Kuaishou Technology China Samsung Research China - Beijing China Sun Yat-sen University China Fuzhou University China Imperial Vision Technology Xidian University China Nanjing University of Science and Technology China Beijing University of Posts and Telecommunications China Guangdong University of Technology China The Hong Kong Polytechnic University Hong Kong University of Science and Technology of China China Indian Institute of Technology Ropar India MBZUAI Dubai United Arab Emirates Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China Assiut University Egypt South China University of Technology China Fujian Normal University China GAC R&D Center Uppsala University Sweden Nanjing University of Information Science and Technology China Chinese Academy of Sciences Institute of Automation China Jinan University China Jiangxi Normal University China Indian Institute of Technology India K-Lens GmbH Hefei University of Technology China McMaster University Canada National Taiwan University Taiwan Research Institute Singapore National University of Singapore Singapore University of Sydney Australia Harbin Institute of Technology China University of New South Wales Australia CSIRO Data61 Australia Seoul National University Korea Republic of Zhengzhou University of Light Industry China
This paper summarizes the 2nd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of the challenge is to super-resolve a low-resolution stereo image pair to a high... 详细信息
来源: 评论
Multi-Camera Multi-Vehicle Tracking with Domain Generalization and Contextual Constraints
Multi-Camera Multi-Vehicle Tracking with Domain Generalizati...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Nhat Minh Chung Huy Dinh-Anh Le Vuong Ai Nguyen Quang Qui-Vinh Nguyen Thong Duy-Minh Nguyen Tin-Trung Thá i Synh Viet-Uyen Ha School of Computer Science and Engineering International University Ho Chi Minh City Vietnam Vietnam National University Ho Chi Minh City Vietnam
In this paper, we propose a system for Multi-Camera Multi-Target (MCMT) Vehicle Tracking in Track 1 of AI City Challenge 2022. There are many technical difficulties to the MCMT problem such as a common lack of labeled... 详细信息
来源: 评论
SomethingFinder: Localizing undefined regions using referring expressions
SomethingFinder: Localizing undefined regions using referrin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Eum, Sungmin Han, David Briggs, Gordon US Army Res Lab Adelphi MD 20783 USA Booz Allen Hamilton Mclean VA 22102 USA US Naval Res Lab Washington DC USA
Previous research on localizing a target region in an image referred to by a natural language expression has occurred within an object-centric paradigm. However, in practice, there may not be any easily named or ident... 详细信息
来源: 评论
Simplifying Transformations for a Family of Elastic Metrics on the Space of Surfaces
Simplifying Transformations for a Family of Elastic Metrics ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Su, Zhe Bauer, Martin Klassen, Eric Gallivan, Kyle Florida State Univ Dept Math Tallahassee FL 32306 USA
We define a new representation for immersed surfaces in R-3 by combining the SRNF and the induced surface metric. Using the L-2 metric on the space of SRNFs and the DeWitt metric on the space of surface metrics, we ob... 详细信息
来源: 评论
CSG0: Continual Urban Scene Generation with Zero Forgetting
CSG0: Continual Urban Scene Generation with Zero Forgetting
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Himalaya Jain Tuan-Hung Vu Patrick Pé rez Matthieu Cord Valeo.ai Paris France Sorbonne University Paris France
With the rapid advances in generative adversarial networks (GANs), the visual quality of synthesised scenes keeps improving, including for complex urban scenes with applications to automated driving. We address in thi... 详细信息
来源: 评论
Complete and temporally consistent video outpainting
Complete and temporally consistent video outpainting
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Loï c Dehan Wiebe Van Ranst Patrick Vandewalle Toon Goedemé EAVISE-PSI-ESAT KU Leuven Sint-Katelijne-Waver Belgium
We describe a novel method for video outpainting. The goal of outpainting is to fill in missing regions at the edges of video frames. Our focus lies on converting portrait (9:16) to landscape (16:9) video. In contrast... 详细信息
来源: 评论
NTIRE 2021 NonHomogeneous Dehazing Challenge Report
NTIRE 2021 NonHomogeneous Dehazing Challenge Report
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ancuti, Codruta O. Ancuti, Cosmin Vasluianu, Florin-Alexandru Timofte, Radu Fu, Minghan Liu, Huan Yu, Yankun Chen, Jun Wang, Keyan Chang, Jerome Wang, Xiyao Liu, Jing Xu, Yi Zhang, Xinjian Zhao, Minyi Zhou, Shuigeng Chen, Tianyi Fu, Jiahui Jiang, Wentao Gao, Chen Liu, Si Wang, Yudong Guo, Jichang Li, Chongyi Yan, Qixin Zheng, Sida Zamir, Syed Waqas Arora, Aditya Dudhane, Akshay Khan, Salman Hayat, Munawar Khan, Fahad Shahbaz Shao, Ling Zhang, Haichuan Guo, Tiantong Monga, Vishal Yang, Wenjin Lin, Jin Luo, Xiaotong Huang, Guowen Chen, Shuxin Qu, Yanyun Xu, Kele Yang, Lehan Sun, Pengliang Niu, Xuetong Zheng, Junjun Ruan, Xiaotong Wang, Yunfeng Yang, Jiang Luo, Zhipeng Wang, Sai Xu, Zhenyu Cao, Xiaochun Luo, Jun Zheng, Zhuoran Ren, Wenqi Wang, Tao Chen, Yiqun Leng, Cong Li, Chenghua Cheng, Jian Sung, Chang-Sung Chen, Jun-Cheng Jo, Eunsung Sim, Jae-Young Geethu, M. M. Akhil, K. A. Sreeni, K. G. Jeena, R. S. Zacharias, Joseph Manu, Chippy M. Huang, Zexi Zhang, Baofeng Zhang, Yiwen Li, Jindong Chen, Mianjie Xiao, Quan Su, Qingchao Han, Lihua Huang, Yanting Prajapati, Kalpesh Chudasama, Vishal Patel, Heena Sarvaiya, Anjali Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph Jing, Hongyuan Huang, Zilong Fu, Yiran Wu, Haoqiang Zha, Quanxing Zhu, Zhiwei Lv, Hejun Univ Politehn Timisoara ETcTI Timisoara Romania UCL ICTEAM Louvain Belgium Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland McMaster Univ Hamilton ON Canada Xidian Univ Xian Peoples R China Natl Taiwan Univ Taipei Taiwan Univ Chinese Acad Sci Inst Automat Ctr Res Intelligent Syst & Engn Beijing Peoples R China Bilibili Inc Shanghai Peoples R China Fudan Univ Shanghai Peoples R China Beihang Univ Beijing Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Nanyang Technol Univ NTU Sch Comp Sci & Engn Singapore Singapore Incept Inst Artificial Intelligence IIAI Abu Dhabi U Arab Emirates Penn State Univ Sch Elect Engn & Comp Sci Informat Proc & Algorithms Lab iPAL University Pk PA 16802 USA Xiamen Univ Dept Comp Sci Xiamen Peoples R China Key Lab Parallel & Distributed Proc Changsha Peoples R China Alibaba Inc Shanghai Peoples R China DeepBlue Technol Shanghai Co Ltd Shanghai Peoples R China Chinese Acad Sci Inst Informat Engn State Key Lab Informat Secur Beijing Peoples R China CASIA Beijing Peoples R China CASIA AiRiA Beijing Peoples R China Natl Taiwan Univ Data Sci Degree Program Taipei Taiwan Ulsan Natl Inst Sci & Technol Ulsan South Korea Coll Engn Dept ECE CV Lab Trivandrum Kerala India AICTE Univ Kollam Kerala India South China Univ Techonol Sch Elect & Informat Engn Guangzhou Peoples R China Shenzhen Wave Kingdom Co Ltd Shenzhen Peoples R China Sardar Vallabhbhai Natl Inst Technol Surat India Beijing Union Univ Coll Robot Beijing Peoples R China
This work reviews the results of the NTIRE 2021 Challenge on Non-Homogeneous Dehazing. The proposed techniques and their results have been evaluated on a novel dataset that extends the NH-Haze datset. It consists of a... 详细信息
来源: 评论
Trust Your IMU: Consequences of Ignoring the IMU Drift
Trust Your IMU: Consequences of Ignoring the IMU Drift
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Marcus Valtonen Ö rnhag Patrik Persson rten Wadenbä ck Kalle Å strö m Anders Heyden Centre for Mathematical Sciences Lund University Department of Electrical Engineering Link&#x00F6 ping University
In this paper, we argue that modern pre-integration methods for inertial measurement units (IMUs) are accurate enough to ignore the drift for short time intervals. This allows us to consider a simplified camera model,... 详细信息
来源: 评论