咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3561-3570 订阅
排序:
A Hardware Prototype Targeting Distributed Deep Learning for On-device Inference
A Hardware Prototype Targeting Distributed Deep Learning for...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Allen-Jasmin Farcas Guihong Li Kartikeya Bhardwaj Radu Marculescu The University of Texas at Austin Austin TX USA Arm Inc San Jose CA USA
This paper presents a hardware prototype and a framework for a new communication-aware model compression for distributed on-device inference. Our approach relies on Knowledge Distillation (KD) and achieves orders of m... 详细信息
来源: 评论
SomethingFinder: Localizing undefined regions using referring expressions
SomethingFinder: Localizing undefined regions using referrin...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Sungmin Eum David Han Gordon Briggs US Army Research Lab US Naval Research Lab
Previous research on localizing a target region in an image referred to by a natural language expression has occurred within an object-centric paradigm. However, in practice, there may not be any easily named or ident... 详细信息
来源: 评论
VoronoiNet : General Functional Approximators with Local Support
VoronoiNet : General Functional Approximators with Local Sup...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Francis Williams Jérôme Parent-Lévesque Derek Nowrouzezahrai Daniele Panozzo Kwang Moo Yi Andrea Tagliasacchi New York University McGill University University of Victoria Google Brain
Voronoi diagrams are highly compact representations that are used in various Graphics applications. In this work, we show how to embed a differentiable version of it - via a novel deep architecture - into a generative... 详细信息
来源: 评论
Leveraging combinatorial testing for safety-critical computer vision datasets
Leveraging combinatorial testing for safety-critical compute...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Christoph Gladisch Christian Heinzemann Martin Herrmann Matthias Woehrle Corporate Research Robert Bosch GmbH
Deep learning-based approaches have gained popularity for environment perception tasks such as semantic segmentation and object detection from images. However, the different nature of a data-driven deep neural nets (D... 详细信息
来源: 评论
Story Completion with Explicit Modeling of Commonsense Knowledge
Story Completion with Explicit Modeling of Commonsense Knowl...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Mingda Zhang Keren Ye Rebecca Hwa Adriana Kovashka Department of Computer Science University of Pittsburgh
Growing up with bedtime tales, even children could easily tell how a story should develop; but selecting a coherent and reasonable ending for a story is still not easy for machines. To successfully choose an ending re... 详细信息
来源: 评论
A Deep Physical Model for Solar Irradiance Forecasting with Fisheye Images
A Deep Physical Model for Solar Irradiance Forecasting with ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Vincent Le Guen Nicolas Thome EDF R&D France CEDRIC Conservatoire National des Arts et Métiers Paris France
We present a new deep learning approach for short-term solar irradiance forecasting based on fisheye images. Our architecture, based on recent works on video prediction with partial differential equations, extracts sp... 详细信息
来源: 评论
Neurodata Lab’s approach to the Challenge on computer vision for Physiological Measurement
Neurodata Lab’s approach to the Challenge on Computer Visio...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Mikhail Artemyev Marina Churikova Mikhail Grinenko Olga Perepelkina Neurodata Lab LLC Miami USA
This paper introduces the Neurodata Lab's approach presented at the 1st Challenge on Remote Physiological Signal Sensing (RePSS) organized within CVPR2020. The RePSS challenge was focused on measuring the average ... 详细信息
来源: 评论
An a-contrario Biometric Fusion Approach
An a-contrario Biometric Fusion Approach
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Luis Di Martino Javier Preciozzi Rafael Grompone von Gioi Guillermo Garella Alicia Fernández Federico Lecumberry IIE Universidad de la República Uruguay Centre Borelli ENS Paris-Saclay Université Paris-Saclay France
Fusion is a key component in many biometric systems: it is one of the most widely used techniques to improve their accuracy. Each time we need to combine the output of systems that use different biometric traits, or d... 详细信息
来源: 评论
Extensions and limitations of randomized smoothing for robustness guarantees
Extensions and limitations of randomized smoothing for robus...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jamie Hayes University College London
Randomized smoothing, a method to certify a classifier's decision on an input is invariant under adversarial noise, offers attractive advantages over other certification methods. It operates in a black-box and so ... 详细信息
来源: 评论
Continual Learning for Anomaly Detection in Surveillance Videos
Continual Learning for Anomaly Detection in Surveillance Vid...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Keval Doshi Yasin Yilmaz University of South Florida Tampa FL
Anomaly detection in surveillance videos has been recently gaining attention. A challenging aspect of high-dimensional applications such as video surveillance is continual learning. While current state-of-the-art deep... 详细信息
来源: 评论