咨询与建议

限定检索结果

文献类型

  • 3,915 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 3,917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,011 篇 工学
    • 2,919 篇 计算机科学与技术...
    • 216 篇 软件工程
    • 141 篇 机械工程
    • 133 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 25 篇 电气工程
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 1,559 篇 医学
    • 1,558 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,408 篇 computer vision
  • 1,085 篇 training
  • 1,043 篇 pattern recognit...
  • 805 篇 conferences
  • 709 篇 computational mo...
  • 543 篇 visualization
  • 491 篇 computer archite...
  • 446 篇 three-dimensiona...
  • 410 篇 semantics
  • 409 篇 benchmark testin...
  • 383 篇 codes
  • 331 篇 transformers
  • 290 篇 deep learning
  • 277 篇 feature extracti...
  • 260 篇 neural networks
  • 256 篇 task analysis
  • 238 篇 shape
  • 216 篇 image segmentati...
  • 204 篇 measurement
  • 202 篇 object detection

机构

  • 72 篇 tsinghua univ pe...
  • 59 篇 univ sci & techn...
  • 55 篇 zhejiang univ pe...
  • 55 篇 chinese univ hon...
  • 51 篇 carnegie mellon ...
  • 51 篇 peng cheng lab p...
  • 49 篇 swiss fed inst t...
  • 47 篇 sensetime res pe...
  • 46 篇 shanghai ai lab ...
  • 42 篇 univ hong kong p...
  • 38 篇 huawei noahs ark...
  • 35 篇 univ chinese aca...
  • 35 篇 shanghai jiao to...
  • 33 篇 alibaba grp peop...
  • 32 篇 tech univ munich...
  • 31 篇 stanford univ st...
  • 30 篇 peking univ peop...
  • 30 篇 swiss fed inst t...
  • 29 篇 adobe res san jo...
  • 29 篇 google res mount...

作者

  • 63 篇 timofte radu
  • 30 篇 van gool luc
  • 19 篇 yang yi
  • 19 篇 qiao yu
  • 18 篇 loy chen change
  • 16 篇 zhang lei
  • 16 篇 radu timofte
  • 15 篇 sun jian
  • 14 篇 liu yang
  • 14 篇 liu shuaicheng
  • 14 篇 tao dacheng
  • 13 篇 li xin
  • 13 篇 fan haoqiang
  • 13 篇 chen wei-ting
  • 12 篇 luo ping
  • 12 篇 chen dongdong
  • 12 篇 wang kai
  • 12 篇 wang xinchao
  • 12 篇 torralba antonio
  • 12 篇 ghanem bernard

语言

  • 3,916 篇 英文
  • 1 篇 其他
检索条件"任意字段=2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022"
3917 条 记 录,以下是3581-3590 订阅
排序:
Deep Low-Rank Subspace Clustering
Deep Low-Rank Subspace Clustering
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Mohsen Kheirandishfard Fariba Zohrizadeh Farhad Kamangar Department of Computer Science and Engineering University of Texas Arlington USA
This paper is concerned with developing a novel approach to tackle the problem of subspace clustering. The approach introduces a convolutional autoencoder-based architecture to generate low-rank representations (LRR) ... 详细信息
来源: 评论
Photosequencing of Motion Blur using Short and Long Exposures
Photosequencing of Motion Blur using Short and Long Exposure...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Vijay Rengarajan Shuo Zhao Ruiwen Zhen John Glotzbach Hamid Sheikh Aswin C. Sankaranarayanan Carnegie Mellon University Samsung Research America
Photosequencing aims to transform a motion blurred image to a sequence of sharp images. This problem is challenging due to the inherent ambiguities in temporal ordering as well as the recovery of lost spatial textures... 详细信息
来源: 评论
Match or No Match: Keypoint Filtering based on Matching Probability
Match or No Match: Keypoint Filtering based on Matching Prob...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Alexandra I. Papadaki Ronny Hänsch Computer Vision & Remote Sensing Department Technical University Berlin Department SAR Technology German Aerospace Center (DLR)
Keypoints that do not meet the needs of a given application are a very common accuracy and efficiency bottleneck in many computer vision tasks, including keypoint matching and 3D reconstruction. Many computer vision a... 详细信息
来源: 评论
Noise-based Selection of Robust Inherited Model for Accurate Continual Learning
Noise-based Selection of Robust Inherited Model for Accurate...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xiaocong Du Zheng Li Jae-sun Seo Frank Liu Yu Cao Arizona State University Oak Ridge National Lab
There is a growing demand for an intelligent system to continually learn knowledge from a data stream. Continual learning requires both the preservation of previous knowledge (i.e., avoiding catastrophic forgetting) a... 详细信息
来源: 评论
Self-supervised Object Motion and Depth Estimation from Video
Self-supervised Object Motion and Depth Estimation from Vide...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Qi Dai Vaishakh Patii Simon Hecker Dengxin Dai Luc Van Gool Konrad Schindler Computer Vision Lab ETH Zurich
We present a self-supervised learning framework to estimate the individual object motion and monocular depth from video. We model the object motion as a 6 degree-of- freedom rigid-body transformation. The instance seg... 详细信息
来源: 评论
Decomposing Image Generation into Layout Prediction and Conditional Synthesis
Decomposing Image Generation into Layout Prediction and Cond...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Anna Volokitin Ender Konukoglu Luc Van Gool Computer Vision Laboratory ETH Zürich
Learning the distribution of multi-object scenes with Generative Adversarial Networks (GAN) is challenging. Guiding the learning using semantic intermediate representations, which are less complex than images, can be ... 详细信息
来源: 评论
Multi-view Self-Constructing Graph Convolutional Networks with Adaptive Class Weighting Loss for Semantic Segmentation
Multi-view Self-Constructing Graph Convolutional Networks wi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Qinghui Liu Michael Kampffmeyer Robert Jenssen Arnt-Børre Salberg Norwegian Computing Center Oslo Norway UiT Machine Learning Group UiT the Arctic University of Norway Tromsø Norway
We propose a novel architecture called the Multi-view Self-Constructing Graph Convolutional Networks (MSCG- Net) for semantic segmentation. Building on the recently proposed Self-Constructing Graph (SCG) module, which... 详细信息
来源: 评论
Fine grained pointing recognition for natural drone guidance
Fine grained pointing recognition for natural drone guidance
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: O. L. Barbed P. Azagra L. Teixeira M. Chli J. Civera A. C. Murillo DIIS-i3A University of Zaragoza Spain Vision for Robotics Lab ETH Zurich Switzerland
Human action recognition systems are typically focused on identifying different actions, rather than fine grained variations of the same action. This work explores strategies to identify different pointing directions ... 详细信息
来源: 评论
FoNet: A Memory-efficient Fourier-based Orthogonal Network for Object recognition
FoNet: A Memory-efficient Fourier-based Orthogonal Network f...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Feng Wei Uyen Trang Nguyen Hui Jiang Department of Electrical Engineering and Computer Science York University Toronto Canada
The memory consumption of most Convolutional Neural Network (CNN) architectures grows rapidly with the increasing depth of the network, which is a major constraint for efficient network training and inference on moder... 详细信息
来源: 评论
DeepFake Detection by Analyzing Convolutional Traces
DeepFake Detection by Analyzing Convolutional Traces
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Luca Guarnera Oliver Giudice Sebastiano Battiato iCTLab University of Catania Catania Italy
The Deepfake phenomenon has become very popular nowadays thanks to the possibility to create incredibly realistic images using deep learning tools, based mainly on ad-hoc Generative Adversarial Networks (GAN). In this... 详细信息
来源: 评论