咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是91-100 订阅
A-CAP: Anticipation Captioning with Commonsense Knowledge
A-CAP: Anticipation Captioning with Commonsense Knowledge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Duc Minh Vo Quoc-An Luong Sugimoto, Akihiro Nakayama, Hideki Univ Tokyo Tokyo Japan Grad Univ Adv Studies Hayama Kanagawa Japan Natl Inst Informat Tokyo Japan
Humans possess the capacity to reason about the future based on a sparse collection of visual cues acquired over time. In order to emulate this ability, we introduce a novel task called Anticipation Captioning, which ... 详细信息
来源: 评论
Spectral Bayesian Uncertainty for Image Super-resolution
Spectral Bayesian Uncertainty for Image Super-resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Tao Cheng, Jun Tan, Shan Huazhong Univ Sci & Technol Wuhan Peoples R China
Recently deep learning techniques have significantly advanced image super-resolution (SR). Due to the black-box nature, quantifying reconstruction uncertainty is crucial when employing these deep SR networks. Previous... 详细信息
来源: 评论
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Gradient-based Uncertainty Attribution for Explainable Bayes...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hanjing Joshi, Dhiraj Wang, Shiqiang Ji, Qiang Rensselaer Polytech Inst Troy NY 12180 USA IBM Res Armonk NY USA
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the predicti... 详细信息
来源: 评论
Revisiting Self-Similarity: Structural Embedding for Image Retrieval
Revisiting Self-Similarity: Structural Embedding for Image R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lee, Seongwon Lee, Suhyeon Seong, Hongje Kim, Euntai Yonsci Univ Sch Elect & Elect Engn Seoul South Korea
Despite advances in global image representation, existing image retrieval approaches rarely consider geometric structure during the global retrieval stage. In this work, we revisit the conventional self-similarity des... 详细信息
来源: 评论
Deep Random Projector: Accelerated Deep Image Prior
Deep Random Projector: Accelerated Deep Image Prior
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Taihui Wang, Hengkang Zhuang, Zhong Sun, Ju Univ Minnesota Comp Sci & Engn Minneapolis MN 55455 USA Univ Minnesota Elect & Comp Engn Minneapolis MN USA
Deep image prior (DIP) has shown great promise in tackling a variety of image restoration (IR) and general visual inverse problems, needing no training data. However, the resulting optimization process is often very s... 详细信息
来源: 评论
Test of Time: Instilling Video-Language Models with a Sense of Time
Test of Time: Instilling Video-Language Models with a Sense ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bagad, Piyush Tapaswi, Makarand Snoek, Cees G. M. Univ Amsterdam Amsterdam Netherlands IIIT Hyderabad Hyderabad India
Modelling and understanding time remains a challenge in contemporary video understanding models. With language emerging as a key driver towards powerful generalization, it is imperative for foundational video-language... 详细信息
来源: 评论
Data-efficient Large Scale Place recognition with Graded Similarity Supervision
Data-efficient Large Scale Place Recognition with Graded Sim...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Leyva-Vallina, Maria Strisciuglio, Nicola Petkov, Nicolai Univ Groningen Groningen Netherlands Univ Twente Enschede Netherlands
Visual place recognition (VPR) is a fundamental task of computer vision for visual localization. Existing methods are trained using image pairs that either depict the same place or not. Such a binary indication does n... 详细信息
来源: 评论
TOPLight: Lightweight Neural Networks with Task-Oriented Pretraining for Visible-Infrared recognition
TOPLight: Lightweight Neural Networks with Task-Oriented Pre...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Hao Cheng, Xu Peng, Wei Nanjing Univ Informat Sci & Technol Sch Comp Sci Nanjing Peoples R China Stanford Univ Dept Psychiat & Behav Sci Stanford CA USA
Visible-infrared recognition (VI recognition) is a challenging task due to the enormous visual difference across heterogeneous images. Most existing works achieve promising results by transfer learning, such as pretra... 详细信息
来源: 评论
KiUT: Knowledge-injected U-Transformer for Radiology Report Generation
KiUT: Knowledge-injected U-Transformer for Radiology Report ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Zhongzhen Zhang, Xiaofan Zhang, Shaoting Shanghai Jiao Tong Univ Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China SenseTime Res Hong Kong Peoples R China
Radiology report generation aims to automatically generate a clinically accurate and coherent paragraph from the X-ray image, which could relieve radiologists from the heavy burden of report writing. Although various ... 详细信息
来源: 评论
Regularization of polynomial networks for image recognition
Regularization of polynomial networks for image recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chrysos, Grigorios G. Wang, Bohan Deng, Jiankang Cevher, Volkan Ecole Polytech Fed Lausanne LIONS Lausanne Switzerland Huawei UKRD Cambridge England
Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as... 详细信息
来源: 评论