咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是111-120 订阅
排序:
Multiplicative Fourier Level of Detail
Multiplicative Fourier Level of Detail
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dou, Yishun Zheng, Zhong Jin, Qiaoqiao Ni, Bingbing Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Huawei Shenzhen Peoples R China
We develop a simple yet surprisingly effective implicit representing scheme called Multiplicative Fourier Level of Detail (MFLOD) motivated by the recent success of multiplicative filter network. Built on multi-resolu... 详细信息
来源: 评论
Learning Expressive Prompting With Residuals for vision Transformers
Learning Expressive Prompting With Residuals for Vision Tran...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Das, Rajshekhar Dukler, Yonatan Ravichandran, Avinash Swarninathan, Ashwin Carnegie Mellon Univ Pittsburgh PA 15213 USA AWS AI Labs Shanghai Peoples R China
Prompt learning is an efficient approach to adapt transformers by inserting learnable set of parameters into the input and intermediate representations of a pre-trained model. In this work, we present Expressive Promp... 详细信息
来源: 评论
ABCD : Arbitrary Bitwise Coefficient for De-quantization
ABCD : Arbitrary Bitwise Coefficient for De-quantization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Han, Woo Kyoung Lee, Byeonghun Park, Sang Hyun Jin, Kyong Hwan Daegu Gyeongbuk Inst Sci & Technol DGIST Daegu South Korea
Modern displays and contents support more than 8bits image and video. However, bit-starving situations such as compression codecs make low bit-depth (LBD) images (<8bits), occurring banding and blurry artifacts. Pr... 详细信息
来源: 评论
Neumann Network with Recursive Kernels for Single Image Defocus Deblurring
Neumann Network with Recursive Kernels for Single Image Defo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Quan, Yuhui Wu, Zicong Ji, Hui South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Pazhou Lab Guangzhou 510335 Peoples R China Natl Univ Singapore Dept Math Singapore 119076 Singapore
Single image defocus deblurring (SIDD) refers to recovering an all-in-focus image from a defocused blurry one. It is a challenging recovery task due to the spatially-varying defocus blurring effects with significant s... 详细信息
来源: 评论
Bias in Pruned vision Models: In-Depth Analysis and Countermeasures
Bias in Pruned Vision Models: In-Depth Analysis and Counterm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Iofinova, Eugenia Peste, Alexandra Alistarh, Dan IST Austria Klosterneuburg Austria Neural Magic Somerville NJ USA
Pruning-that is, setting a significant subset of the parameters of a neural network to zero-is one of the most popular methods of model compression. Yet, several recent works have raised the issue that pruning may ind... 详细信息
来源: 评论
Adaptive Sparse Pairwise Loss for Object Re-Identification
Adaptive Sparse Pairwise Loss for Object Re-Identification
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Xiao Zhong, Yujie Cheng, Zhen Liang, Fan Ma, Lin Tsinghua Univ BNRist Dept Automat Beijing 100084 Peoples R China Meituan Inc Beijing Peoples R China
Object re-identification (ReID) aims to find instances with the same identity as the given probe from a large gallery. Pairwise losses play an important role in training a strong ReID network. Existing pairwise losses... 详细信息
来源: 评论
Multivariate, Multi-frequency and Multimodal: Rethinking Graph Neural Networks for Emotion recognition in Conversation
Multivariate, Multi-frequency and Multimodal: Rethinking Gra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Feiyu Shao, Jie Zhu, Shuyuan Shen, Heng Tao Univ Elect Sci & Technol China Chengdu Peoples R China Sichuan Artificial Intelligence Res Inst Yibin Peoples R China
Complex relationships of high arity across modality and context dimensions is a critical challenge in the Emotion recognition in Conversation (ERC) task. Yet, previous works tend to encode multimodal and contextual re... 详细信息
来源: 评论
Feature Aggregated Queries for Transformer-based Video Object Detectors
Feature Aggregated Queries for Transformer-based Video Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cui, Yiming Univ Florida Gainesville FL 32611 USA
Video object detection needs to solve feature degradation situations that rarely happen in the image domain. One solution is to use the temporal information and fuse the features from the neighboring frames. With Tran... 详细信息
来源: 评论
Quality-aware Pre-trained Models for Blind Image Quality Assessment
Quality-aware Pre-trained Models for Blind Image Quality Ass...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Kai Yuan, Kun Sun, Ming Li, Mading Wen, Xing Kuaishou Technol Beijing Peoples R China
Blind image quality assessment (BIQA) aims to automatically evaluate the perceived quality of a single image, whose performance has been improved by deep learning-based methods in recent years. However, the paucity of... 详细信息
来源: 评论
MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis
MoFusion: A Framework for Denoising-Diffusion-based Motion S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dabral, Rishabh Mughal, Muhammad Hamza Golyanik, Vladislav Theobalt, Christian Max Planck Inst Informat SIC Saarbrucken Germany Saarland Univ Saarbrucken Germany
Conventional methods for human motion synthesis have either been deterministic or have had to struggle with the trade-off between motion diversity vs motion quality. In response to these limitations, we introduce MoFu... 详细信息
来源: 评论