咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是201-210 订阅
排序:
Robust Single Image Reflection Removal Against Adversarial Attacks
Robust Single Image Reflection Removal Against Adversarial A...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Song, Zhenbo Zhang, Zhenyuan Zhang, Kaihao Luo, Wenhan Fan, Zhaoxin Ren, Wenqi Lu, Jianfeng Nanjing Univ Sci & Technol Nanjing Peoples R China Australian Natl Univ Canberra ACT Australia Sun Yat Sen Univ Shenzhen Campus Shenzhen Peoples R China Renmin Univ China Beijing Peoples R China
This paper addresses the problem of robust deep single-image reflection removal (SIRR) against adversarial attacks. Current deep learning based SIRR methods have shown significant performance degradation due to unnoti... 详细信息
来源: 评论
Efficient and Explicit Modelling of Image Hierarchies for Image Restoration
Efficient and Explicit Modelling of Image Hierarchies for Im...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Yawei Fan, Yuchen Xiang, Xiaoyu Demandolx, Denis Ranjan, Rakesh Timofte, Radu Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Meta Real Labs Menlo Pk CA 33137 USA Univ Wurzburg Wurzburg Germany Katholieke Univ Leuven Leuven Belgium
The aim of this paper is to propose a mechanism to efficiently and explicitly model image hierarchies in the global, regional, and local range for image restoration. To achieve that, we start by analyzing two importan... 详细信息
来源: 评论
A Practical Upper Bound for the Worst-Case Attribution Deviations
A Practical Upper Bound for the Worst-Case Attribution Devia...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Fan Kong, Adams Wai-Kin Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Nanyang Technol Univ Rapid Rich Object Search ROSE Lab IGP Singapore Singapore
Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models. Recent studies bring up attention to the security of attribution methods as they are vulnerable to a... 详细信息
来源: 评论
Spatial-temporal Concept based Explanation of 3D ConvNets
Spatial-temporal Concept based Explanation of 3D ConvNets
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ji, Ying Wang, Yu Kato, Jien Nagoya Univ Nagoya Aichi Japan Hitotsubashi Univ Kunitachi Tokyo Japan Ritsumeikan Univ Kyoto Japan
Convolutional neural networks (CNNs) have shown remarkable performance on various tasks. Despite its widespread adoption, the decision procedure of the network still lacks transparency and interpretability, making it ... 详细信息
来源: 评论
MEDIC: Remove Model Backdoors via Importance Driven Cloning
MEDIC: Remove Model Backdoors via Importance Driven Cloning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Qiuling Tao, Guanhong Honorio, Jean Liu, Yingqi An, Shengwei Shen, Guangyu Cheng, Siyuan Zhang, Xiangyu Purdue Univ W Lafayette IN 47907 USA
We develop a novel method to remove injected backdoors in deep learning models. It works by cloning the benign behaviors of a trojaned model to a new model of the same structure. It trains the clone model from scratch... 详细信息
来源: 评论
Divide and Conquer: Answering Questions with Object Factorization and Compositional Reasoning
Divide and Conquer: Answering Questions with Object Factoriz...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Shi Zhao, Qi Univ Minnesota Dept Comp Sci & Engn Minneapolis MN 55455 USA
Humans have the innate capability to answer diverse questions, which is rooted in the natural ability to correlate different concepts based on their semantic relationships and decompose difficult problems into sub-tas... 详细信息
来源: 评论
Soft Augmentation for Image Classification
Soft Augmentation for Image Classification
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yang Yan, Shen Leal-Taixe, Laura Hays, James Ramanan, Deva Argo AI Pittsburgh PA 15222 USA
Modern neural networks are over-parameterized and thus rely on strong regularization such as data augmentation and weight decay to reduce overfitting and improve generalization. The dominant form of data augmentation ... 详细信息
来源: 评论
How can objects help action recognition?
How can objects help action recognition?
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Xingyi Arnab, Anurag Sun, Chen Schmid, Cordelia Google Res Mountain View CA 94043 USA
Current state-of-the-art video models process a video clip as a long sequence of spatio-temporal tokens. However, they do not explicitly model objects, their interactions across the video, and instead process all the ... 详细信息
来源: 评论
Learning to Zoom and Unzoom
Learning to Zoom and Unzoom
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Thavamani, Chittesh Li, Mengtian Ferroni, Francesco Ramanan, Deva Carnegie Mellon Univ Pittsburgh PA 15213 USA Argo AI Pittsburgh PA USA Waymo Mountain View CA USA Nvidia Santa Clara CA USA
Many perception systems in mobile computing, autonomous navigation, and AR/VR face strict compute constraints that are particularly challenging for high-resolution input images. Previous works propose nonuniform downs... 详细信息
来源: 评论
REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge Memory
REVEAL: Retrieval-Augmented Visual-Language Pre-Training wit...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Ziniu Iscen, Ahmet Sun, Chen Wang, Zirui Chang, Kai-Wei Sun, Yizhou Schmid, Cordelia Ross, David A. Fathi, Alireza Univ Calif Los Angeles Los Angeles CA 90024 USA Google Res Mountain View CA USA
In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries... 详细信息
来源: 评论