咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是281-290 订阅
排序:
Prototypical Residual Networks for Anomaly Detection and Localization
Prototypical Residual Networks for Anomaly Detection and Loc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Hui Wu, Zuxuan Wang, Zheng Chen, Zhineng Jiang, Yu-Gang Fudan Univ Shanghai Key Lab Intell Info Proc Sch CS Shanghai Peoples R China Shanghai Collaborat Innovat Ctr Intelligent Visua Shanghai Peoples R China Zhejiang Univ Technol Sch Comp Sci Hangzhou Peoples R China
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies... 详细信息
来源: 评论
Language-Guided Audio-Visual Source Separation via Trimodal Consistency
Language-Guided Audio-Visual Source Separation via Trimodal ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tan, Reuben Ray, Arijit Burns, Andrea Plummer, Bryan A. Salamon, Justin Nieto, Oriol Russell, Bryan Saenko, Kate Boston Univ Boston MA 02215 USA Adobe Res San Francisco CA USA IBM Res MIT IBM Watson AI Lab Cambridge MA USA
We propose a self-supervised approach for learning to perform audio source separation in videos based on natural language queries, using only unlabeled video and audio pairs as training data. A key challenge in this t... 详细信息
来源: 评论
Adaptive Channel Sparsity for Federated Learning under System Heterogeneity
Adaptive Channel Sparsity for Federated Learning under Syste...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liao, Dongping Gao, Xitong Zhao, Yiren Xu, Chengzhong Univ Macau State Key Lab IoTSC CIS Dept Taipa Macau Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Imperial Coll London London England
Owing to the non-i.i.d. nature of client data, channel neurons in federated-learned models may specialize to distinct features for different clients. Yet, existing channel-sparse federated learning (FL) algorithms pre... 详细信息
来源: 评论
Super-Fibonacci Spirals: Fast, Low-Discrepancy Sampling of SO(3)
Super-Fibonacci Spirals: Fast, Low-Discrepancy Sampling of S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Alexa, Marc TU Berlin Berlin Germany
Super-Fibonacci spirals are an extension of Fibonacci spirals, enabling fast generation of an arbitrary but fixed number of 3D orientations. The algorithm is simple and fast. A comprehensive evaluation comparing to ot... 详细信息
来源: 评论
Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning
Temporal Attention Unit: Towards Efficient Spatiotemporal Pr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tan, Cheng Gao, Zhangyang Wu, Lirong Xu, Yongjie Xia, Jun Li, Siyuan Li, Stan Z. Westlake Univ AI Lab Res Ctr Ind Future Hangzhou Peoples R China
Spatiotemporal predictive learning aims to generate future frames by learning from historical frames. In this paper, we investigate existing methods and present a general framework of spatiotemporal predictive learnin... 详细信息
来源: 评论
AMT: All-Pairs Multi-Field Transforms for Efficient Frame Interpolation
AMT: All-Pairs Multi-Field Transforms for Efficient Frame In...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Zhen Zhu, Zuo-Liang Han, Ling-Hao Hou, Qibin Guo, Chun-Le Cheng, Ming-Ming Nankai Univ VCIP CS Tianjin Peoples R China
We present All-Pairs Multi-Field Transforms (AMT), a new network architecture for video frame interpolation. It is based on two essential designs. First, we build bidirectional correlation volumes for all pairs of pix... 详细信息
来源: 评论
Zero-shot Model Diagnosis
Zero-shot Model Diagnosis
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Luo, Jinqi Wang, Zhaoning Wu, Chen Henry Huang, Dong De la Torre, Fernando Carnegie Mellon Univ Pittsburgh PA 15213 USA
When it comes to deploying deep vision models, the behavior of these systems must be explicable to ensure confidence in their reliability and fairness. A common approach to evaluate deep learning models is to build a ... 详细信息
来源: 评论
Pic2Word: Mapping Pictures to Words for Zero-shot Composed Image Retrieval
Pic2Word: Mapping Pictures to Words for Zero-shot Composed I...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Saito, Kuniaki Sohn, Kihyuk Zhang, Xiang Li, Chun-Liang Lee, Chen-Yu Saenko, Kate Pfister, Tomas Boston Univ Boston MA 02215 USA Google Cloud AI Res Mountain View CA 94043 USA Google Res Mountain View CA USA MIT IBM Watson AI Lab Cambridge MA USA
In Composed Image Retrieval (CIR), a user combines a query image with text to describe their intended target. Existing methods rely on supervised learning of CIR models using labeled triplets consisting of the query i... 详细信息
来源: 评论
Visibility Constrained Wide-band Illumination Spectrum Design for Seeing-in-the-Dark
Visibility Constrained Wide-band Illumination Spectrum Desig...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Niu, Muyao Li, Zhuoxiao Zhong, Zhihang Zheng, Yinqiang Univ Tokyo Tokyo Japan
Seeing-in-the-dark is one of the most important and challenging computer vision tasks due to its wide applications and extreme complexities of in-the-wild scenarios. Existing arts can be mainly divided into two thread... 详细信息
来源: 评论
Exploring Structured Semantic Prior for Multi Label recognition with Incomplete Labels
Exploring Structured Semantic Prior for Multi Label Recognit...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ding, Zixuan Wang, Ao Chen, Hui Zhang, Qiang Liu, Pengzhang Bao, Yongjun Yan, Weipeng Han, Jungong Xidian Univ Xian Peoples R China Tsinghua Univ Beijing Peoples R China BNRist Beijing Peoples R China Hangzhou Zhuoxi Inst Brain & Intelligence Hangzhou Peoples R China JD Com Beijing Peoples R China Univ Sheffield Dept Comp Sci Sheffield S Yorkshire England Univ Sheffield Ctr Machine Intelligence Sheffield S Yorkshire England
Multi-label recognition (MLR) with incomplete labels is very challenging. Recent works strive to explore the image-to-label correspondence in the vision-language model, i.e., CLIP [22], to compensate for insufficient ... 详细信息
来源: 评论