咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,088 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,439 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 976 篇 codes
  • 975 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 688 篇 feature extracti...
  • 535 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 514 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 456 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 carnegie mellon ...
  • 142 篇 tsinghua univ pe...
  • 135 篇 chinese univ hon...
  • 108 篇 zhejiang univ pe...
  • 101 篇 peng cheng lab p...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 85 篇 shanghai jiao to...
  • 83 篇 stanford univ st...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 75 篇 univ hong kong p...
  • 74 篇 university of ch...
  • 72 篇 microsoft res as...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 35 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 zha zheng-jun
  • 29 篇 sun jian
  • 27 篇 qi tian
  • 27 篇 luc van gool
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是291-300 订阅
排序:
STDLens: Model Hijacking-resilient Federated Learning for Object Detection
STDLens: Model Hijacking-resilient Federated Learning for Ob...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chow, Ka-Ho Liu, Ling Wei, Wenqi Ilhan, Fatih Wu, Yanzhao Georgia Instutite Technol Atlanta GA 30332 USA
Federated Learning (FL) has been gaining popularity as a collaborative learning framework to train deep learning-based object detection models over a distributed population of clients. Despite its advantages, FL is vu... 详细信息
来源: 评论
Deep Global Registration
Deep Global Registration
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Choy, Christopher Dong, Wei Koltun, Vladlen Stanford Univ Stanford CA 94305 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Intel Labs Hillsboro OR USA
We present Deep Global Registration, a differentiable framework for pairwise registration of real-world 3D scans. Deep global registration is based on three modules: a 6-dimensional convolutional network for correspon... 详细信息
来源: 评论
Unsupervised Intrinsic Image Decomposition with LiDAR Intensity
Unsupervised Intrinsic Image Decomposition with LiDAR Intens...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sato, Shogo Yao, Yasuhiro Yoshida, Taiga Kaneko, Takuhiro Ando, Shingo Shimamura, Jun INTT Human Informat Labs Tokyo Japan NTT Commun Sci Labs Tokyo Japan
Intrinsic image decomposition (IID) is the task that decomposes a natural image into albedo and shade. While IID is typically solved through supervised learning methods, it is not ideal due to the difficulty in observ... 详细信息
来源: 评论
Efficient On-device Training via Gradient Filtering
Efficient On-device Training via Gradient Filtering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Yuedong Li, Guihong Marculescu, Radu Univ Texas Austin Austin TX 78712 USA
Despite its importance for federated learning, continuous learning and many other applications, on-device training remains an open problem for EdgeAI. The problem stems from the large number of operations (e.g., float... 详细信息
来源: 评论
Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
Learning Distortion Invariant Representation for Image Resto...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Xin Li, Bingchen Jin, Xin Lan, Cuiling Chen, Zhibo Univ Sci & Technol China Hefei Peoples R China Eastern Inst Adv Study Ningbo Peoples R China Microsoft Res Asia Beijing Peoples R China
In recent years, we have witnessed the great advancement of Deep neural networks (DNNs) in image restoration. However, a critical limitation is that they cannot generalize well to real-world degradations with differen... 详细信息
来源: 评论
Robust 3D Shape Classification via Non-local Graph Attention Network
Robust 3D Shape Classification via Non-local Graph Attention...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qin, Shengwei Li, Zhong Liu, Ligang Zhejiang Sci Tech Univ Sch Mech Engn Hangzhou Peoples R China Huzhou Univ Sch Informat Huzhou Peoples R China Zhejiang Sci Tech Univ Sch Sci Hangzhou Zhejiang Peoples R China Univ Sci & Technol China Sch Math Sci Hefei Anhui Peoples R China
We introduce a non-local graph attention network (NL-GAT), which generates a novel global descriptor through two sub-networks for robust 3D shape classification. In the first sub-network, we capture the global relatio... 详细信息
来源: 评论
6D-Diff: A Keypoint Diffusion Framework for 6D Object Pose Estimation
6D-Diff: A Keypoint Diffusion Framework for 6D Object Pose E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Li Qui, Haoxuan Cai, Yujun Liu, Jun Singapore Univ Technol & Design Singapore Singapore Nanyang Technol Univ Singapore Singapore
Estimating the 6D object pose from a single RGB image often involves noise and indeterminacy due to challenges such as occlusions and cluttered backgrounds. Meanwhile, diffusion models have shown appealing performance... 详细信息
来源: 评论
Label-Free Liver Tumor Segmentation
Label-Free Liver Tumor Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Qixin Chen, Yixiong Xiao, Junfei Sun, Shuwen Chen, Jieneng Yuille, Alan Zhou, Zongwei Huazhong Univ Sci & Technol Wuhan Peoples R China Chinese Univ Hong Kong Shenzhen Shenzhen Peoples R China Johns Hopkins Univ Baltimore MD USA Nanjing Med Univ Affiliated Hosp 1 Nanjing Peoples R China
We demonstrate that AI models can accurately segment liver tumors without the need for manual annotation by using synthetic tumors in CT scans. Our synthetic tumors have two intriguing advantages: (I) realistic in sha... 详细信息
来源: 评论
Learning Customized Visual Models with Retrieval-Augmented Knowledge
Learning Customized Visual Models with Retrieval-Augmented K...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Haotian Son, Kilho Yang, Jianwei Liu, Ce Gao, Jianfeng Lee, Yong Jae Li, Chunyuan Univ Wisconsin Madison Madison WI 53706 USA Microsoft Redmond WA USA
Image-text contrastive learning models such as CLIP have demonstrated strong task transfer ability. The high generality and usability of these visual models is achieved via a web-scale data collection process to ensur... 详细信息
来源: 评论
Visibility Constrained Wide-band Illumination Spectrum Design for Seeing-in-the-Dark
Visibility Constrained Wide-band Illumination Spectrum Desig...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Niu, Muyao Li, Zhuoxiao Zhong, Zhihang Zheng, Yinqiang Univ Tokyo Tokyo Japan
Seeing-in-the-dark is one of the most important and challenging computer vision tasks due to its wide applications and extreme complexities of in-the-wild scenarios. Existing arts can be mainly divided into two thread... 详细信息
来源: 评论