咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4131-4140 订阅
排序:
Coarse-Fine Networks for Temporal Activity Detection in Videos
Coarse-Fine Networks for Temporal Activity Detection in Vide...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kahatapitiya, Kumara Ryoo, Michael S. SUNY Stony Brook Stony Brook NY 11794 USA
In this paper, we introduce Coarse-Fine Networks, a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion. Traditional Vid... 详细信息
来源: 评论
MultiLink: Multi-class Structure Recovery via Agglomerative Clustering and Model Selection
MultiLink: Multi-class Structure Recovery via Agglomerative ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Magri, Luca Leveni, Filippo Boracchi, Giacomo Politecn Milan DEIB Milan Italy
We address the problem of recovering multiple structures of different classes in a dataset contaminated by noise and outliers. In particular, we consider geometric structures defined by a mixture of underlying paramet... 详细信息
来源: 评论
Ego-Exo: Transferring Visual Representations from Third-person to First-person Videos
Ego-Exo: Transferring Visual Representations from Third-pers...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Yanghao Nagarajan, Tushar Xiong, Bo Grauman, Kristen Facebook AI Res Mountain View CA 94127 USA UT Austin Austin TX USA
We introduce an approach for pre-training egocentric video models using large-scale third-person video datasets. Learning from purely egocentric data is limited by low dataset scale and diversity, while using purely e... 详细信息
来源: 评论
Lipstick ain't enough: Beyond Color Matching for In-the-Wild Makeup Transfer
Lipstick ain't enough: Beyond Color Matching for In-the-Wild...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Thao Nguyen Anh Tuan Tran Minh Hoai VinAI Res Hanoi Vietnam VinUniversity Hanoi Vietnam SUNY Stony Brook Stony Brook NY 11790 USA
Makeup transfer is the task of applying on a source face the makeup style from a reference image. Real-life makeups are diverse and wild, which cover not only color-changing but also patterns, such as stickers, blushe... 详细信息
来源: 评论
Faster Meta Update Strategy for Noise-Robust Deep Learning
Faster Meta Update Strategy for Noise-Robust Deep Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Youjiang Zhu, Linchao Jiang, Lu Yang, Yi Baidu Res Beijing Peoples R China Univ Technol Sydney ReLER Sydney NSW Australia Google Res Mountain View CA USA
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising p... 详细信息
来源: 评论
Dynamic Head: Unifying Object Detection Heads with Attentions
Dynamic Head: Unifying Object Detection Heads with Attention...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dai, Xiyang Chen, Yinpeng Xiao, Bin Chen, Dongdong Liu, Mengchen Yuan, Lu Zhang, Lei Microsoft Redmond WA 98052 USA
The complex nature of combining localization and classification in object detection has resulted in the flourished development of methods. Previous works tried to improve the performance in various object detection he... 详细信息
来源: 评论
Correspondence Transformers with Asymmetric Feature Learning and Matching Flow Super-Resolution
Correspondence Transformers with Asymmetric Feature Learning...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yixuan Sun Dongyang Zhao Zhangyue Yin Yiwen Huang Tao Gui Wenqiang Zhang Weifeng Ge Academy of Engineering & Technology Fudan University Shanghai China School of Computer Science Fudan University Shanghai China
This paper solves the problem of learning dense visual correspondences between different object instances of the same category with only sparse annotations. We decompose this pixel-level semantic matching problem into...
来源: 评论
Understanding Failures of Deep Networks via Robust Feature Extraction
Understanding Failures of Deep Networks via Robust Feature E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Singla, Sahil Nushi, Besmira Shah, Shital Kamar, Ece Horvitz, Eric Univ Maryland College Pk MD 20742 USA Microsoft Res Redmond WA USA
Traditional evaluation metrics for learned models that report aggregate scores over a test set are insufficient for surfacing important and informative patterns of failure over features and instances. We introduce and... 详细信息
来源: 评论
IMAGINE: Image Synthesis by Image-Guided Model Inversion
IMAGINE: Image Synthesis by Image-Guided Model Inversion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Pei Li, Yijun Singh, Krishna Kumar Lu, Jingwan Vasconcelos, Nuno UC San Diego CA 92093 USA Adobe Res San Jose CA USA
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images from only a single training sample. We leverage the knowledge of image semantics f... 详细信息
来源: 评论
Long-Tailed Multi-Label Visual recognition by Collaborative Training on Uniform and Re-balanced Samplings
Long-Tailed Multi-Label Visual Recognition by Collaborative ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guo, Hao Wang, Song Univ South Carolina Columbia SC 29201 USA
Long-tailed data distribution is common in many multi-label visual recognition tasks and the direct use of these data for training usually leads to relatively low performance on tail classes. While re-balanced data sa... 详细信息
来源: 评论