咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4161-4170 订阅
排序:
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for vision Transformers
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Qua...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yijiang Liu Huanrui Yang Zhen Dong Kurt Keutzer Li Du Shanghang Zhang Nanjing University University of California Berkeley National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University
The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effec...
来源: 评论
Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings
Privacy-Preserving Image Features via Adversarial Affine Sub...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dusmanu, Mihai Schoenberger, Johannes L. Sinha, Sudipta N. Pollefeys, Marc Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Microsoft Menlo Pk CA USA
Many computer vision systems require users to upload image features to the cloud for processing and storage. These features can be exploited to recover sensitive information about the scene or subjects, e.g., by recon... 详细信息
来源: 评论
Learning to Warp for Style Transfer
Learning to Warp for Style Transfer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xiao-Chang Yang, Yong-Liang Hall, Peter Univ Bath Bath Avon England
Since its inception in 2015, Style Transfer has focused on texturing a content image using an art exemplar. Recently, the geometric changes that artists make have been acknowledged as an important component of style [... 详细信息
来源: 评论
Progressive Unsupervised Learning for Visual Object Tracking
Progressive Unsupervised Learning for Visual Object Tracking
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Qiangqiang Wan, Jia Chan, Antoni B. City Univ Hong Kong Dept Comp Sci Hong Kong Peoples R China
In this paper, we propose a progressive unsupervised learning (PUL) framework, which entirely removes the need for annotated training videos in visual tracking. Specifically, we first learn a background discrimination... 详细信息
来源: 评论
CompletionFormer: Depth Completion with Convolutions and vision Transformers
CompletionFormer: Depth Completion with Convolutions and Vis...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Youmin Zhang Xianda Guo Matteo Poggi Zheng Zhu Guan Huang Stefano Mattoccia University of Bologna PhiGent Robotics
Given sparse depths and the corresponding RGB images, depth completion aims at spatially propagating the sparse measurements throughout the whole image to get a dense depth prediction. Despite the tremendous progress ...
来源: 评论
GIVL: Improving Geographical Inclusivity of vision-Language Models with Pre-Training Methods
GIVL: Improving Geographical Inclusivity of Vision-Language ...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Da Yin Feng Gao Govind Thattai Michael Johnston Kai-Wei Chang University of California Los Angeles Amazon Alexa AI
A key goal for the advancement of AI is to develop technologies that serve the needs not just of one group but of all communities regardless of their geographical re-gion. In fact, a significant proportion of knowledg...
来源: 评论
Edges to Shapes to Concepts: Adversarial Augmentation for Robust vision
Edges to Shapes to Concepts: Adversarial Augmentation for Ro...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Aditay Tripathi Rishubh Singh Anirban Chakraborty Pradeep Shenoy CDS Indian Institute of Science Google Research India
Recent work has shown that deep vision models tend to be overly dependent on low-level or “texture” features, leading to poor generalization. Various data augmentation strategies have been proposed to overcome this ...
来源: 评论
Model Barrier: A Compact Un-Transferable Isolation Domain for Model Intellectual Property Protection
Model Barrier: A Compact Un-Transferable Isolation Domain fo...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Lianyu Wang Meng Wang Daoqiang Zhang Huazhu Fu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China Institute of High Performance Computing (IHPC) Agency for Science Technology and Research (A*STAR) Singapore
As scientific and technological advancements result from human intellectual labor and computational costs, protecting model intellectual property (IP) has become increasingly important to encourage model creators and ...
来源: 评论
Texts as Images in Prompt Tuning for Multi-Label Image recognition
Texts as Images in Prompt Tuning for Multi-Label Image Recog...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zixian Guo Bowen Dong Zhilong Ji Jinfeng Bai Yiwen Guo Wangmeng Zuo Harbin Institute of Technology Tomorrow Advancing Life Independent Researcher Pazhou Lab Guangzhou
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., ...
来源: 评论
PREDATOR: Registration of 3D Point Clouds with Low Overlap
PREDATOR: Registration of 3D Point Clouds with Low Overlap
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Shengyu Gojcic, Zan Usvyatsov, Mikhail Wieser, Andreas Schindler, Konrad Swiss Fed Inst Technol Zurich Switzerland
We introduce PREDATOR, a model for pairwise point-cloud registration with deep attention to the overlap region. Different from previous work, our model is specifically designed to handle (also) point-cloud pairs with ... 详细信息
来源: 评论