咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4181-4190 订阅
排序:
PVO: Panoptic Visual Odometry
PVO: Panoptic Visual Odometry
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Weicai Ye Xinyue Lan Shuo Chen Yuhang Ming Xingyuan Yu Hujun Bao Zhaopeng Cui Guofeng Zhang State Key Lab of CAD&CG Zhejiang University ZJU-SenseTime Joint Lab of 3D Vision School of Computer Science Hangzhou Dianzi University VIL University of Bristol
We present PVO, a novel panoptic visual odometry framework to achieve more comprehensive modeling of the scene motion, geometry, and panoptic segmentation information. Our PVO models visual odometry (VO) and video pan...
来源: 评论
All-in-Focus Imaging from Event Focal Stack
All-in-Focus Imaging from Event Focal Stack
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Hanyue Lou Minggui Teng Yixin Yang Boxin Shi National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University National Engineering Research Center of Visual Technology School of Computer Science Peking University
Traditional focal stack methods require multiple shots to capture images focused at different distances of the same scene, which cannot be applied to dynamic scenes well. Generating a high-quality all-in-focus image f...
来源: 评论
FrameExit: Conditional Early Exiting for Efficient Video recognition
FrameExit: Conditional Early Exiting for Efficient Video Rec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ghodrati, Amir Bejnordi, Babak Ehteshami Habibian, Amirhossein Qualcomm AI Res Nijmegen Netherlands
In this paper, we propose a conditional early exiting framework for efficient video recognition. While existing works focus on selecting a subset of salient frames to reduce the computation costs, we propose to use a ... 详细信息
来源: 评论
FewSOME: One-Class Few Shot Anomaly Detection with Siamese Networks
FewSOME: One-Class Few Shot Anomaly Detection with Siamese N...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition Workshops, cvprW 2023
作者: Belton, Niamh Hagos, Misgina Tsighe Lawlor, Aonghus Curran, Kathleen M. Science Foundation Ireland Centre for Research Training in Machine Learning Ireland University College Dublin School of Medicine Ireland University College Dublin School of Computer Science Ireland University College Dublin Insight Centre for Data Analytics Dublin Ireland
Recent Anomaly Detection techniques have progressed the field considerably but at the cost of increasingly complex training pipelines. Such techniques require large amounts of training data, resulting in computational... 详细信息
来源: 评论
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
KeepAugment: A Simple Information-Preserving Data Augmentati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gong, Chengyue Wang, Dilin Li, Meng Chandra, Vikas Liu, Qiang Univ Texas Austin Austin TX 78712 USA Facebook Mountain View CA USA
Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show that the standard data augmentation methods may introduce distribution shift and... 详细信息
来源: 评论
Look Before you Speak: Visually Contextualized Utterances
Look Before you Speak: Visually Contextualized Utterances
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Seo, Paul Hongsuck Nagrani, Arsha Schmid, Cordelia Google Res Mountain View CA 94043 USA
While most conversational AI systems focus on textual dialogue only, conditioning utterances on visual context (when it's available) can lead to more realistic conversations. Unfortunately, a major challenge for i... 详细信息
来源: 评论
Using Shape to Categorize: Low-Shot Learning with an Explicit Shape Bias
Using Shape to Categorize: Low-Shot Learning with an Explici...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Stojanov, Stefan Anh Thai Rehg, James M. Georgia Inst Technol Atlanta GA 30332 USA
It is widely accepted that reasoning about object shape is important for object recognition. However, the most powerful object recognition methods today do not explicitly make use of object shape during learning. In t... 详细信息
来源: 评论
Generative Interventions for Causal Learning
Generative Interventions for Causal Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mao, Chengzhi Cha, Augustine Gupta, Amogh Wang, Hao Yang, Junfeng Vondrick, Carl Columbia Univ New York NY 10027 USA Rutgers State Univ New Brunswick NJ USA
We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, whic... 详细信息
来源: 评论
Good is Bad: Causality Inspired Cloth-debiasing for Cloth-changing Person Re-identification
Good is Bad: Causality Inspired Cloth-debiasing for Cloth-ch...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zhengwei Yang Meng Lin Xian Zhong Yu Wu Zheng Wang National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Wuhan University Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science and Artificial Intelligence Wuhan University of Technology
Entangled representation of clothing and identity (ID)-intrinsic clues are potentially concomitant in conventional person Re- IDentification (ReID). Nevertheless, eliminating the negative impact of clothing on ID rema...
来源: 评论
Convolutional Dynamic Alignment Networks for Interpretable Classifications
Convolutional Dynamic Alignment Networks for Interpretable C...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Boehle, Moritz Fritz, Mario Schiele, Bernt MPI Informat Saarland Informat Campus Saarbrucken Germany CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks(1) (CoDA-Nets), which are performant classifiers with a high degree of inherent interpretability. Their core building ... 详细信息
来源: 评论