咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4201-4210 订阅
排序:
Generalized Domain Adaptation
Generalized Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mitsuzumi, Yu Irie, Go Ikami, Daiki Shibata, Takashi NTT Corp NTT Commun Sci Labs Tokyo Japan
Many variants of unsupervised domain adaptation (UDA) problems have been proposed and solved individually. Its side effect is that a method that works for one variant is often ineffective for or not even applicable to... 详细信息
来源: 评论
Architectural Adversarial Robustness: The Case for Deep Pursuit
Architectural Adversarial Robustness: The Case for Deep Purs...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cazenavette, George Murdock, Calvin Lucey, Simon Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Adelaide Adelaide SA Australia
Despite their unmatched performance, deep neural networks remain susceptible to targeted attacks by nearly imperceptible levels of adversarial noise. While the underlying cause of this sensitivity is not well understo... 详细信息
来源: 评论
MTN: Forensic Analysis of MP4 Video Files Using Graph Neural Networks
MTN: Forensic Analysis of MP4 Video Files Using Graph Neural...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition Workshops, cvprW 2023
作者: Xiang, Ziyue Singh Yadav, Amit Kumar Bestagini, Paolo Tubaro, Stefano Delp, Edward J. School of Electrical and Computer Engineering West LafayetteIN United States Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria Milano Italy
MP4 video files are stored using a tree data structure. These trees contain rich information that can be used for forensic analysis. In this paper, we propose MP4 Tree Network (MTN), an approach based on an end-to-end... 详细信息
来源: 评论
Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning
Semantic-aware Knowledge Distillation for Few-Shot Class-Inc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheraghian, Ali Rahman, Shafin Fang, Pengfei Roy, Soumava Kumar Petersson, Lars Harandi, Mehrtash Australian Natl Univ Canberra ACT Australia Data61 CSIRO Sydney NSW Australia North South Univ Dhaka Bangladesh Monash Univ Melbourne Vic Australia
Few-shot class incremental learning (FSCIL) portrays the problem of learning new concepts gradually, where only a few examples per concept are available to the learner. Due to the limited number of examples for traini... 详细信息
来源: 评论
Cross-View Regularization for Domain Adaptive Panoptic Segmentation
Cross-View Regularization for Domain Adaptive Panoptic Segme...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Jiaxing Guan, Dayan Xiao, Aoran Lu, Shijian Nanyang Technol Univ Sch Comp Sci Engn Singapore Singapore
Panoptic segmentation unifies semantic segmentation and instance segmentation which has been attracting increasing attention in recent years. However, most existing research was conducted under a supervised learning s... 详细信息
来源: 评论
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Teed, Zachary Deng, Jia Princeton Univ Princeton NJ 08544 USA
We address the problem of scene flow: given a pair of stereo or RGB-D video frames, estimate pixelwise 3D motion. We introduce RAFT-3D, a new deep architecture for scene flow. RAFT-3D is based on the RAFT model develo... 详细信息
来源: 评论
CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation
CGA-Net: Category Guided Aggregation for Point Cloud Semanti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lu, Tao Wang, Limin Wu, Gangshan Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Previous point cloud semantic segmentation networks use the same process to aggregate features from neighbors of the same category and different categories. However, the joint area between two objects usually only occ... 详细信息
来源: 评论
Mining Better Samples for Contrastive Learning of Temporal Correspondence
Mining Better Samples for Contrastive Learning of Temporal C...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jeon, Sangryul Min, Dongbo Kim, Seungryong Sohn, Kwanghoon Yonsei Univ Seoul South Korea Ewha Womans Univ Seoul South Korea Korea Univ Seoul South Korea
We present a novel framework for contrastive learning of pixel-level representation using only unlabeled video. Without the need of ground-truth annotation, our method is capable of collecting well-defined positive co... 详细信息
来源: 评论
Truly shift-invariant convolutional neural networks
Truly shift-invariant convolutional neural networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chaman, Anadi Dokmanic, Ivan Univ Illinois Champaign IL 61820 USA Univ Basel Basel Switzerland
Thanks to the use of convolution and pooling layers, convolutional neural networks were for a long time thought to be shift-invariant. However, recent works have shown that the output of a CNN can change significantly... 详细信息
来源: 评论
A Multiplexed Network for End-to-End, Multilingual OCR
A Multiplexed Network for End-to-End, Multilingual OCR
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Jing Pang, Guan Kovvuri, Rama Toh, Mandy Liang, Kevin J. Krishnan, Praveen Yin, Xi Hassner, Tal Facebook AI Menlo Pk CA 94025 USA
Recent advances in OCR have shown that an end-to-end (E2E) training pipeline that includes both detection and recognition leads to the best results. However, many existing methods focus primarily on Latin-alphabet lan... 详细信息
来源: 评论