咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4311-4320 订阅
排序:
DAP: Detection-Aware Pre-training with Weak Supervision
DAP: Detection-Aware Pre-training with Weak Supervision
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhong, Yuanyi Wang, Jianfeng Wang, Lijuan Peng, Jian Wang, Yu-Xiong Zhang, Lei Univ Illinois Urbana IL 61801 USA Microsoft Redmond WA USA
This paper presents a detection-aware pre-training (DAP) approach, which leverages only weakly-labeled classification-style datasets (e.g., ImageNet) for pre-training, but is specifically tailored to benefit object de... 详细信息
来源: 评论
Automatic Correction of Internal Units in Generative Neural Networks
Automatic Correction of Internal Units in Generative Neural ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tousi, Ali Jeong, Haedong Han, Jiyeon Choi, Hwanil Choi, Jaesik Korea Adv Inst Sci & Technol KAIST Daejeon South Korea Ulsan Natl Inst Sci & Technol UNIST Ulsan South Korea INEEJI Seoul South Korea
Generative Adversarial Networks (GANs) have shown satisfactory performance in synthetic image generation by devising complex network structure and adversarial training scheme. Even though GANs are able to synthesize r... 详细信息
来源: 评论
SwiftNet: Real-time Video Object Segmentation
SwiftNet: Real-time Video Object Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Haochen Jiang, Xiaolong Ren, Haibing Hu, Yao Bai, Song Alibaba Youku Cognit & Intelligent Lab Beijing Peoples R China Univ Oxford Oxford England
In this work we present SwiftNet for real-time semisupervised video object segmentation (one-shot VOS), which reports 77.8% J&F and 70 FPS on DAVIS 2017 validation dataset, leading all present solutions in overall... 详细信息
来源: 评论
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent with Learned Distance Functions
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yun He Danhang Tang Yinda Zhang Xiangyang Xue Yanwei Fu School of Computer Science Fudan University. Google School of Data Science Fudan University Shanghai Key Lab of Intelligent Information Processing Fudan ISTBI�ZJNU Algorithm Centre for Brain-inspired Intelligence Zhejiang Normal University Jinhua China
Most existing point cloud upsampling methods have roughly three steps: feature extraction, feature expansion and 3D coordinate prediction. However, they usually suffer from two critical issues: (1) fixed upsampling ra...
来源: 评论
Compacting Binary Neural Networks by Sparse Kernel Selection
Compacting Binary Neural Networks by Sparse Kernel Selection
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yikai Wang Wenbing Huang Yinpeng Dong Fuchun Sun Anbang Yao Department of Computer Science and Technology State Key Lab on Intelligent Technology and Systems BNRist Center Tsinghua University Gaoling School of Artificial Intelligence Renmin University of China RealAI Intel Labs China
Binary Neural Network (BNN) represents convolution weights with 1-bit values, which enhances the efficiency of storage and computation. This paper is motivated by a previously revealed phenomenon that the binary kerne...
来源: 评论
Primitive Representation Learning for Scene Text recognition
Primitive Representation Learning for Scene Text Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yan, Ruijie Peng, Liangrui Xiao, Shanyu Yao, Gang Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Elect Engn Beijing Peoples R China
Scene text recognition is a challenging task due to diverse variations of text instances in natural scene images. Conventional methods based on CNN-RNN-CTC or encoder-decoder with attention mechanism may not fully inv... 详细信息
来源: 评论
Leveraging per Image-Token Consistency for vision-Language Pre-training
Leveraging per Image-Token Consistency for Vision-Language P...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yunhao Gou Tom Ko Hansi Yang James Kwok Yu Zhang Mingxuan Wang Southern University of Science and Technology Hong Kong University of Science and Technology ByteDance AI Lab Peng Cheng Laboratory
Most existing vision-language pre-training (VLP) approaches adopt cross-modal masked language modeling (CMLM) to learn vision-language associations. However, we find that CMLM is insufficient for this purpose accordin...
来源: 评论
An Alternative Probabilistic Interpretation of the Huber Loss
An Alternative Probabilistic Interpretation of the Huber Los...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Meyer, Gregory P. Uber Adv Technol Grp Pittsburgh PA 15201 USA
The Huber loss is a robust loss function used for a wide range of regression tasks. To utilize the Huber loss, a parameter that controls the transitions from a quadratic function to an absolute value function needs to... 详细信息
来源: 评论
The Affective Growth of computer vision
The Affective Growth of Computer Vision
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Su, Norman Makoto Crandall, David J. Indiana Univ Luddy Sch Informat Comp & Engn Bloomington IN 47405 USA
The success of deep learning has led to intense growth and interest in computer vision, along with concerns about its potential impact on society. Yet we know little about how these changes have affected the people th... 详细信息
来源: 评论
Rethinking Federated Learning with Domain Shift: A Prototype View
Rethinking Federated Learning with Domain Shift: A Prototype...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Wenke Huang Mang Ye Zekun Shi He Li Bo Du National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence Hubei Key Laboratory of Multimedia and Network Communication Engineering School of Computer Science Wuhan University Wuhan China Hubei Luojia Laboratory Wuhan China
Federated learning shows a bright promise as a privacy-preserving collaborative learning technique. However, prevalent solutions mainly focus on all private data sampled from the same domain. An important challenge is...
来源: 评论