咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4401-4410 订阅
排序:
ZBS: Zero-Shot Background Subtraction via Instance-Level Background Modeling and Foreground Selection
ZBS: Zero-Shot Background Subtraction via Instance-Level Bac...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yongqi An Xu Zhao Tao Yu Haiyun Gu Chaoyang Zhao Ming Tang Jinqiao Wang National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Background subtraction (BGS) aims to extract all moving objects in the video frames to obtain binary foreground segmentation masks. Deep learning has been widely used in this field. Compared with supervised-based BGS ...
来源: 评论
Uncertainty-guided Model Generalization to Unseen Domains
Uncertainty-guided Model Generalization to Unseen Domains
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qiao, Fengchun Peng, Xi Univ Delaware Newark DE 19716 USA
We study a worst-case scenario in generalization: Out-of-domain generalization from a single source. The goal is to learn a robust model from a single source and expect it to generalize over many unknown distributions... 详细信息
来源: 评论
RepMode: Learning to Re-Parameterize Diverse Experts for Subcellular Structure Prediction
RepMode: Learning to Re-Parameterize Diverse Experts for Sub...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Donghao Zhou Chunbin Gu Junde Xu Furui Liu Qiong Wang Guangyong Chen Pheng-Ann Heng Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The Chinese University of Hong Kong Zhejiang Lab
In biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, it is slow, expensive, and harmful to cells. In this paper, we model it as a ...
来源: 评论
Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Exploiting Spatial Dimensions of Latent in GAN for Real-time...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Hyunsu Choi, Yunjey Kim, Junho Yoo, Sungjoo Uh, Youngjung NAVER AI Lab Seoul South Korea Seoul Natl Univ Seoul South Korea Yonsei Univ Seoul South Korea
Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) t... 详细信息
来源: 评论
Glancing at the Patch: Anomaly Localization with Global and Local Feature Comparison
Glancing at the Patch: Anomaly Localization with Global and ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Shenzhi Wu, Liwei Cui, Lei Shen, Yujun SenseTime Res Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Anomaly localization, with the purpose to segment the anomalous regions within images, is challenging due to the large variety of anomaly types. Existing methods typically train deep models by treating the entire imag... 详细信息
来源: 评论
LASR: Learning Articulated Shape Reconstruction from a Monocular Video
LASR: Learning Articulated Shape Reconstruction from a Monoc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Gengshan Sun, Deqing Jampani, Varun Vlasic, Daniel Cole, Forrester Chang, Huiwen Ramanan, Deva Freeman, William T. Liu, Ce Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Res Mountain View CA USA Google Mountain View CA 94043 USA
Remarkable progress has been made in 3D reconstruction of rigid structures from a video or a collection of images. However, it is still challenging to reconstruct nonrigid structures from RGB inputs, due to its under-... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images
D<SUP>2</SUP>IM-Net: Learning Detail Disentangled Implicit F...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Manyi Zhang, Hao Simon Fraser Univ Burnaby BC Canada
We present the first single-view 3D reconstruction network aimed at recovering geometric details from an input image which encompass both topological shape structures and surface features. Our key idea is to train the... 详细信息
来源: 评论
Representation Learning via Global Temporal Alignment and Cycle-Consistency
Representation Learning via Global Temporal Alignment and Cy...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hadji, Isma Derpanis, Konstantinos G. Jepson, Allan D. Samsung AI Ctr Toronto Toronto ON Canada
We introduce a weakly supervised method for representation learning based on aligning temporal sequences (e.g., videos) of the same process (e.g., human action). The main idea is to use the global temporal ordering of... 详细信息
来源: 评论
DeAR: Debiasing vision-Language Models with Additive Residuals
DeAR: Debiasing Vision-Language Models with Additive Residua...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Ashish Seth Mayur Hemani Chirag Agarwal IIT Madras India Adobe Inc.
Large pre-trained vision-language models (VLMs) reduce the time for developing predictive models for various vision-grounded language downstream tasks by providing rich, adaptable image and text representations. Howev...
来源: 评论