咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4421-4430 订阅
排序:
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On
Disentangled Cycle Consistency for Highly-realistic Virtual ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ge, Chongjian Song, Yibing Ge, Yuying Yang, Han Liu, Wei Luo, Ping Univ Hong Kong Hong Kong Peoples R China Tencent AI Lab Bellevue WA 98004 USA Swiss Fed Inst Technol Zurich Switzerland Tencent Data Platform Bellevue WA USA
Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as... 详细信息
来源: 评论
Iterative Shrinking for Referring Expression Grounding Using Deep Reinforcement Learning
Iterative Shrinking for Referring Expression Grounding Using...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Mingjie Xiao, Jimin Lim, Eng Gee Xian Jiaotong Liverpool Univ Suzhou Peoples R China Univ Liverpool Liverpool Merseyside England
In this paper, we are tackling the proposal-free referring expression grounding task, aiming at localizing the target object according to a query sentence, without relying on off-the-shelf object proposals. Existing p... 详细信息
来源: 评论
Variational Pedestrian Detection
Variational Pedestrian Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yuang He, Huanyu Li, Jianguo Li, Yuxi See, John Lin, Weiyao Shanghai Jiao Tong Univ Shanghai Peoples R China Ant Grp Hangzhou Peoples R China Heriot Watt Univ Putrajaya Malaysia
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment p... 详细信息
来源: 评论
Conditional Bures Metric for Domain Adaptation
Conditional Bures Metric for Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Luo, You-Wei Ren, Chuan-Xian Sun Yat Sen Univ Sch Math Guangzhou Guangdong Peoples R China Pazhou Lab Guangzhou Peoples R China
As a vital problem in classification-oriented transfer, unsupervised domain adaptation (UDA) has attracted widespread attention in recent years. Previous UDA methods assume the marginal distributions of different doma... 详细信息
来源: 评论
Consensus Maximisation Using Influences of Monotone Boolean Functions
Consensus Maximisation Using Influences of Monotone Boolean ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tennakoon, Ruwan Suter, David Zhang, Erchuan Chin, Tat-Jun Bab-Hadiashar, Alireza RMIT Univ Melbourne Vic Australia Edith Cowen Univ Perth WA Australia Univ Adelaide Adelaide SA Australia
Consensus maximisation (MaxCon), which is widely used for robust fitting in computer vision, aims to find the largest subset of data that fits the model within some tolerance level. In this paper, we outline the conne... 详细信息
来源: 评论
DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows
DeFlow: Learning Complex Image Degradations from Unpaired Da...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wolf, Valentin Lugmayr, Andreas Danelljan, Martin Van Gool, Luc Timofte, Radu Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by mod... 详细信息
来源: 评论
Accelerating vision-Language Pretraining with Free Language Modeling
Accelerating Vision-Language Pretraining with Free Language ...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Teng Wang Yixiao Ge Feng Zheng Ran Cheng Ying Shan Xiaohu Qie Ping Luo Southern University of Science and Technology The University of Hong Kong ARC Lab Peng Cheng Laboratory Tencent PCG Shanghai AI Laboratory
The state of the arts in vision-language pretraining (VLP) achieves exemplary performance but suffers from high training costs resulting from slow convergence and long training time, especially on large-scale web data...
来源: 评论
PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors
PSD: Principled Synthetic-to-Real Dehazing Guided by Physica...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zeyuan Wang, Yangchao Yang, Yang Liu, Dong Univ Sci & Technol China Hefei Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
Deep learning-based methods have achieved remarkable performance for image dehazing. However, previous studies are mostly focused on training models with synthetic hazy images, which incurs performance drop when the m... 详细信息
来源: 评论
Learning to Associate Every Segment for Video Panoptic Segmentation
Learning to Associate Every Segment for Video Panoptic Segme...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Woo, Sanghyun Kim, Dahun Lee, Joon-Young Kweon, In So Korea Adv Inst Sci & Technol Daejeon South Korea Adobe Res San Jose CA USA
Temporal correspondence - linking pixels or objects across frames - is a fundamental supervisory signal for the video models. For the panoptic understanding of dynamic scenes, we further extend this concept to every s... 详细信息
来源: 评论
Adversarial Laser Beam: Effective Physical-World Attack to DNNs in a Blink
Adversarial Laser Beam: Effective Physical-World Attack to D...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Duan, Ranjie Mao, Xiaofeng Qin, A. K. Chen, Yuefeng Ye, Shaokai He, Yuan Yang, Yun Swinburne Univ Technol Hawthorn Vic Australia Alibaba Grp Hangzhou Zhejiang Peoples R China Ecole Polytech Fed Lausanne Lausanne Switzerland
Though it is well known that the performance of deep neural networks (DNNs) degrades under certain light conditions, there exists no study on the threats of light beams emitted from some physical source as adversarial... 详细信息
来源: 评论