咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4431-4440 订阅
排序:
GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot Attention for vision-and-Language Navigation
GeoVLN: Learning Geometry-Enhanced Visual Representation wit...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jingyang Huo Qiang Sun Boyan Jiang Haitao Lin Yanwei Fu Shanghai Key Lab of Intelligent Information Processing School of Data Science Fudan University Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence Zhejiang Normal University Jinhua China
Most existing works solving Room-to-Room VLN problem only utilize RGB images and do not consider local context around candidate views, which lack sufficient visual cues about surrounding environment. Moreover, natural...
来源: 评论
ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
ViP-DeepLab: Learning Visual Perception with Depth-aware Vid...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qiao, Siyuan Zhu, Yukun Adam, Hartwig Yuille, Alan Chen, Liang-Chieh Johns Hopkins Univ Baltimore MD 21218 USA Google Res Mountain View CA USA
In this paper, we present ViP-DeepLab, a unified model attempting to tackle the long-standing and challenging inverse projection problem in vision, which we model as restoring the point clouds from perspective image s... 详细信息
来源: 评论
Composing Photos Like a Photographer
Composing Photos Like a Photographer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hong, Chaoyi Du, Shuaiyuan Xian, Ke Lu, Hao Cao, Zhiguo Zhong, Weicai Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Minist Educ Key Lab Image Proc & Intelligent Control Wuhan Hubei Peoples R China Huawei CBG Consumer Cloud Serv Prod & Big Data Platform Dept Shenzhen Peoples R China
We show that explicit modeling of composition rules benefits image cropping. Image cropping is considered a promising way to automate aesthetic composition in professional photography. Existing efforts, however;only m... 详细信息
来源: 评论
Efficient CNN Architecture for Multi-modal Aerial View Object Classification
Efficient CNN Architecture for Multi-modal Aerial View Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Miron, Casian Pasarica, Alexandru Timofte, Radu Gheorghe Asachi Tech Univ MCC Resources SRL Iasi Romania
The NTIRE 2021 workshop features a Multi-modal Aerial View Object Classification Challenge. Its focus is on multi-sensor imagery classification in order to improve the performance of automatic target recognition (ATR)... 详细信息
来源: 评论
Video Object Segmentation Using Global and Instance Embedding Learning
Video Object Segmentation Using Global and Instance Embeddin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ge, Wenbin Lu, Xiankai Shen, Jianbing Beijing Inst Technol Beijing Peoples R China Shandong Univ Sch Software Jinan Peoples R China Incept Inst Artificial Intelligence Beijing Peoples R China
In this paper, we propose a feature embedding based video object segmentation (VOS) method which is simple, fast and effective. The current VOS task involves two main challenges: object instance differentiation and cr... 详细信息
来源: 评论
Pulsar: Efficient Sphere-based Neural Rendering
Pulsar: Efficient Sphere-based Neural Rendering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lassner, Christoph Zollhofer, Michael Facebook Real Labs Redmond WA 98052 USA
We propose Pulsar, an efficient sphere-based differentiable rendering module that is orders of magnitude faster than competing techniques, modular, and easy-to-use due to its tight integration with PyTorch. Differenti... 详细信息
来源: 评论
Involution: Inverting the Inherence of Convolution for Visual recognition
Involution: Inverting the Inherence of Convolution for Visua...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Duo Hu, Jie Wang, Changhu Li, Xiangtai She, Qi Zhu, Lei Zhang, Tong Chen, Qifeng Hong Kong Univ Sci & Technol Hong Kong Peoples R China ByteDance AI Lab Beijing Peoples R China Peking Univ Beijing Peoples R China
Convolution has been the core ingredient of modern neural networks, triggering the surge of deep learning in vision. In this work, we rethink the inherent principles of standard convolution for vision tasks, specifica... 详细信息
来源: 评论
Weakly Supervised Segmentation with Point Annotations for Histopathology Images via Contrast-Based Variational Model
Weakly Supervised Segmentation with Point Annotations for Hi...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Hongrun Zhang Liam Burrows Yanda Meng Declan Sculthorpe Abhik Mukherjee Sarah E Coupland Ke Chen Yalin Zheng Department of Eye and Vision Science University of Liverpool Liverpool UK Institute of Systems Molecular and Integrative Biology University of Liverpool Liverpool UK Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques University of Liverpool Liverpool UK Biodiscovery Institute School of Medicine University of Nottingham Nottingham UK
Image segmentation is a fundamental task in the field of imaging and vision. Supervised deep learning for segmentation has achieved unparalleled success when sufficient training data with annotated labels are availabl...
来源: 评论
Jigsaw Clustering for Unsupervised Visual Representation Learning
Jigsaw Clustering for Unsupervised Visual Representation Lea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Pengguang Liu, Shu Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China SmartMore Hong Kong Peoples R China
Unsupervised representation learning with contrastive learning achieved great success. This line of methods duplicate each training batch to construct contrastive pairs, making each training batch and its augmented ve... 详细信息
来源: 评论
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
MOS: Towards Scaling Out-of-distribution Detection for Large...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Rui Li, Yixuan Univ Wisconsin Madison Dept Comp Sci Madison WI 53706 USA
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small datasets, with low resolution and very fe... 详细信息
来源: 评论