咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4451-4460 订阅
排序:
Trajectory Prediction with Latent Belief Energy-Based Model
Trajectory Prediction with Latent Belief Energy-Based Model
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pang, Bo Zhao, Tianyang Xie, Xu Wu, Ying Nian Univ Calif Los Angeles Dept Stat Los Angeles CA 90024 USA
Human trajectory prediction is critical for autonomous platforms like self-driving cars or social robots. We present a latent belief energy-based model (LB-EBM) for diverse human trajectory forecast. LB-EBM is a proba... 详细信息
来源: 评论
iDisc: Internal Discretization for Monocular Depth Estimation
iDisc: Internal Discretization for Monocular Depth Estimatio...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Luigi Piccinelli Christos Sakaridis Fisher Yu Computer Vision Lab ETH Zürich
Monocular depth estimation is fundamental for 3D scene understanding and downstream applications. However, even under the supervised setup, it is still challenging and ill-posed due to the lack of full geometric const...
来源: 评论
Deep Analysis of CNN-based Spatio-temporal Representations for Action recognition
Deep Analysis of CNN-based Spatio-temporal Representations f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Chun-Fu (Richard) Panda, Rameswar Ramakrishnan, Kandan Feris, Rogerio Cohn, John Oliva, Aude Fan, Quanfu MIT IBM Watson AI Lab Cambridge MA 02142 USA MIT Cambridge MA 02139 USA
In recent years, a number of approaches based on 2D or 3D convolutional neural networks (CNN) have emerged for video action recognition, achieving state-of-the-art results on several large-scale benchmark datasets. In... 详细信息
来源: 评论
Neural Auto-Exposure for High-Dynamic Range Object Detection
Neural Auto-Exposure for High-Dynamic Range Object Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Onzon, Emmanuel Mannan, Fahim Heide, Felix Algolux Montreal PQ Canada Princeton Univ Princeton NJ 08544 USA
Real-world scenes have a dynamic range of up to 280 dB that todays imaging sensors cannot directly capture. Existing live vision pipelines tackle this fundamental challenge by relying on high dynamic range (HDR) senso... 详细信息
来源: 评论
NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
NeRF in the Wild: Neural Radiance Fields for Unconstrained P...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Martin-Brualla, Ricardo Radwan, Noha Sajjadi, Mehdi S. M. Barron, Jonathan T. Dosovitskiy, Alexey Duckworth, Daniel Google Res Mountain View CA 94043 USA
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a ... 详细信息
来源: 评论
Virtual Fully-Connected Layer: Training a Large-Scale Face recognition Dataset with Limited Computational Resources
Virtual Fully-Connected Layer: Training a Large-Scale Face R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Pengyu Wang, Biao Zhang, Lei Alibaba Grp Artificial Intelligence Ctr DAMO Acad Hangzhou Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
Recently, deep face recognition has achieved significant progress because of Convolutional Neural Networks (CNNs) and large-scale datasets. However, training CNNs on a large-scale face recognition dataset with limited... 详细信息
来源: 评论
NTIRE 2023 Challenge on Image Denoising: Methods and Results
NTIRE 2023 Challenge on Image Denoising: Methods and Results
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition Workshops, cvprW 2023
作者: Li, Yawei Zhang, Yulun Van Gool, Luc Timofte, Radu Tu, Zhijun Du, Kunpeng Wang, Hailing Chen, Hanting Li, Wei Wang, Xiaofei Hu, Jie Wang, Yunhe Kong, Xiangyu Wu, Jinlong Zhang, Dafeng Zhang, Jianxing Liu, Shuai Bai, Furui Feng, Chaoyu Wang, Hao Zhang, Yuqian Shao, Guangqi Wang, Xiaotao Lei, Lei Xu, Rongjian Zhang, Zhilu Chen, Yunjin Ren, Dongwei Zuo, Wangmeng Wu, Qi Han, Mingyan Cheng, Shen Li, Haipeng Jiang, Ting Jiang, Chengzhi Li, Xinpeng Luo, Jinting Lin, Wenjie Yu, Lei Fan, Haoqiang Liu, Shuaicheng Arora, Aditya Zamir, Syed Waqas Vazquez-Corral, Javier Derpanis, Konstantinos G. Brown, Michael S. Li, Hao Zhao, Zhihao Pan, Jinshan Dong, Jiangxin Tang, Jinhui Yang, Bo Chen, Jingxiang Li, Chenghua Zhang, Xi Zhang, Zhao Ren, Jiahuan Ji, Zhicheng Miao, Kang Zhao, Suiyi Zheng, Huan Wei, YanYan Liu, Kangliang Du, Xiangcheng Liu, Sijie Zheng, Yingbin Wu, Xingjiao Jin, Cheng Wang, Yan Chen, Jiayin Wu, Xiaoxuan Chen, Huiming Zheng, Xing Chen, Yejia Irny, Rajeev Koundinya, Sriharsha Kamath, Vighnesh Khandelwal, Gaurav Khowaja, Sunder Ali Yoon, Jiseok Lee, Ik Hyun Chen, Shijie Zhao, Chengqiang Yang, Huabin Zhang, Zhongjian Huang, Junjia Zhang, Yanru Computer Vision Lab D-ITET Eth Zürich Switzerland Computer Vision Lab Ifi & Caidas University of Würzburg Germany Huawei Noah'Ark Lab Canada Huawei Consumer Business Group China Xiaomi Inc. China Harbin Institute of Technology China Megvii Technology China York University Toronto Canada Abu Dhabi United Arab Emirates Computer Vision Center Universitat Autonòma de Barcelona Spain Nanjing University of Science and Technology China Nanjing University of Information Science and Technology China China Fudan University China Videt Technology South China University of Technology China India University of Sindh Pakistan Iklab Inc. Korea Republic of Iklab Inc. Tech University of Korea Korea Republic of Xuzhou Medical University China Southwest Jiaotong University China
This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best ... 详细信息
来源: 评论
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks
PU-GCN: Point Cloud Upsampling using Graph Convolutional Net...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qian, Guocheng Abualshour, Abdulellah Li, Guohao Thabet, Ali Ghanem, Bernard King Abdullah Univ Sci & Technol KAUST Abu Dhabi U Arab Emirates
The effectiveness of learning-based point cloud upsampling pipelines heavily relies on the upsampling modules and feature extractors used therein. For the point upsampling module, we propose a novel model called NodeS... 详细信息
来源: 评论
StructVPR: Distill Structural Knowledge with Weighting Samples for Visual Place recognition
StructVPR: Distill Structural Knowledge with Weighting Sampl...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yanqing Shen Sanping Zhou Jingwen Fu Ruotong Wang Shitao Chen Nanning Zheng National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University
Visual place recognition (VPR) is usually considered as a specific image retrieval problem. Limited by existing training frameworks, most deep learning-based works cannot extract sufficiently stable global features fr...
来源: 评论
EyePAD++: A Distillation-based approach for joint Eye Authentication and Presentation Attack Detection using Periocular Images
EyePAD++: A Distillation-based approach for joint Eye Authen...
收藏 引用
2022 ieee/cvf conference on computer vision and pattern recognition, cvpr 2022
作者: Dhar, Prithviraj Kumar, Amit Kaplan, Kirsten Gupta, Khushi Ranjan, Rakesh Chellappa, Rama Johns Hopkins University United States Meta Reality Labs
A practical eye authentication (EA) system targeted for edge devices needs to perform authentication and be robust to presentation attacks, all while remaining compute and latency efficient. However, existing eye-base... 详细信息
来源: 评论