咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4491-4500 订阅
排序:
Is BERT Blind? Exploring the Effect of vision-and-Language Pretraining on Visual Language Understanding
Is BERT Blind? Exploring the Effect of Vision-and-Language P...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Morris Alper Michael Fiman Hadar Averbuch-Elor Tel Aviv University
Most humans use visual imagination to understand and reason about language, but models such as BERT reason about language using knowledge acquired during text-only pretraining. In this work, we investigate whether vis...
来源: 评论
Unsupervised Hyperbolic Metric Learning
Unsupervised Hyperbolic Metric Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yan, Jiexi Luo, Lei Deng, Cheng Huang, Heng Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Univ Pittsburgh Dept Elect & Comp Engn Pittsburgh PA 15260 USA JD Finance Amer Corp Mountain View CA 94043 USA
Learning feature embedding directly from images without any human supervision is a very challenging and essential task in the field of computer vision and machine learning. Following the paradigm in supervised manner,... 详细信息
来源: 评论
The Lottery Ticket Hypothesis for Object recognition
The Lottery Ticket Hypothesis for Object Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Girish, Sharath Maiya, Shishira R. Gupta, Kamal Chen, Hao Davis, Larry Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA
recognition tasks, such as object recognition and keypoint estimation, have seen widespread adoption in recent years. Most state-of-the-art methods for these tasks use deep networks that are computationally expensive ... 详细信息
来源: 评论
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Jingwei Huang, Shan Sun, Mingwei Huawei Technol Rieman Lab Shenzhen Guangdong Peoples R China Wuhan Univ Wuhan Hubei Peoples R China
We propose a novel approach for large-scale nonlinear least squares problems based on deep learning frameworks. Nonlinear least squares are commonly solved with the Levenberg-Marquardt (LM) algorithm for fast converge... 详细信息
来源: 评论
Recognizability Embedding Enhancement for Very Low-Resolution Face recognition and Quality Estimation
Recognizability Embedding Enhancement for Very Low-Resolutio...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jacky Chen Long Chai Tiong-Sik Ng Cheng-Yaw Low Jaewoo Park Andrew Beng Jin Teoh Yonsei University Institute for Basic Science
Very low-resolution face recognition (VLRFR) poses unique challenges, such as tiny regions of interest and poor resolution due to extreme standoff distance or wide viewing angle of the acquisition devices. In this pap...
来源: 评论
A vision-Based Method for Human Activity recognition Using Local Binary pattern  13
A Vision-Based Method for Human Activity Recognition Using L...
收藏 引用
13th International conference on computer and Knowledge Engineering, ICCKE 2023
作者: Goodarzi, Babak Javidan, Reza Rezaei, Mohammad Sadegh Shiraz University of Technology Engineering and Information Technology Department of Computer Shiraz Iran
vision-based human activity recognition (HAR) plays a significant role in various practical demands. Recently, different solutions have been proposed and their performance is constantly improved. In this paper, we use... 详细信息
来源: 评论
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Deep Occlusion-Aware Instance Segmentation with Overlapping ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ke, Lei Tai, Yu-Wing Tang, Chi-Keung Hong Kong Univ Sci & Technol Hong Kong Peoples R China Kuaishou Technol Beijing Peoples R China
Segmenting highly-overlapping objects is challenging, because typically no distinction is made between real object contours and occlusion boundaries. Unlike previous two-stage instance segmentation methods, we model i... 详细信息
来源: 评论
Tilted Cross-Entropy (TCE): Promoting Fairness in Semantic Segmentation
Tilted Cross-Entropy (TCE): Promoting Fairness in Semantic S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Szabo, Attila Jamali-Rad, Hadi Mannava, Siva-Datta Shell Global Solut Int BV Amsterdam Netherlands Delft Univ Technol TU Delft Delft Netherlands
Traditional empirical risk minimization (ERM) for semantic segmentation can disproportionately advantage or disadvantage certain target classes in favor of an (unfair but) improved overall performance. Inspired by the... 详细信息
来源: 评论
Meta-Personalizing vision-Language Models to Find Named Instances in Video
Meta-Personalizing Vision-Language Models to Find Named Inst...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Chun-Hsiao Yeh Bryan Russell Josef Sivic Fabian Caba Heilbron Simon Jenni University of California Berkeley Adobe Research Czech Institute of Informatics Robotics and Cybernetics at the Czech Technical University in Prague (CIIRC CTU)
Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for m...
来源: 评论
Building Reliable Explanations of Unreliable Neural Networks: Locally Smoothing Perspective of Model Interpretation
Building Reliable Explanations of Unreliable Neural Networks...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lim, Dohun Lee, Hyeonseok Kim, Sungchan Jeonbuk Natl Univ Div Comp Sci & Engn Jeonju South Korea
We present a novel method for reliably explaining the predictions of neural networks. We consider an explanation reliable if it identifies input features relevant to the model output by considering the input and the n... 详细信息
来源: 评论