咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4521-4530 订阅
排序:
Multi-Modal Relational Graph for Cross-Modal Video Moment Retrieval
Multi-Modal Relational Graph for Cross-Modal Video Moment Re...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zeng, Yawen Cao, Da Wei, Xiaochi Liu, Meng Zhao, Zhou Qin, Zheng Hunan Univ Changsha Hunan Peoples R China Baidu Inc Beijing Peoples R China Shandong Jianzhu Univ Jinan Peoples R China Zhejiang Univ Hangzhou Peoples R China
Given an untrimmed video and a query sentence, cross-modal video moment retrieval aims to rank a video moment from pre-segmented video moment candidates that best matches the query sentence. Pioneering work typically ... 详细信息
来源: 评论
3D Human Action Representation Learning via Cross-View Consistency Pursuit
3D Human Action Representation Learning via Cross-View Consi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Linguo Wang, Minsi Ni, Bingbing Wang, Hang Yang, Jiancheng Zhang, Wenjun Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
In this work, we propose a Cross-view Contrastive Learning framework for unsupervised 3D skeleton-based action Representation (CrosSCLR), by leveraging multiview complementary supervision signal. CrosSCLR consists of ... 详细信息
来源: 评论
Unsupervised Part Segmentation through Disentangling Appearance and Shape
Unsupervised Part Segmentation through Disentangling Appeara...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Shilong Zhang, Lei Yang, Xiao Su, Hang Zhu, Jun Tsinghua Univ Dept Comp Sci & Tech BNRist Ctr Inst AITsinghua Bosch Joint ML Ctr Beijing 100084 Peoples R China Microsoft Corp Redmond WA 98052 USA
We study the problem of unsupervised discovery and segmentation of object parts, which, as an intermediate local representation, are capable of finding intrinsic object structure and providing more explainable recogni... 详细信息
来源: 评论
Dual Contradistinctive Generative Autoencoder
Dual Contradistinctive Generative Autoencoder
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Parmar, Gaurav Li, Dacheng Lee, Kwonjoon Tu, Zhuowen Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Calif San Diego San Diego CA USA
We present a new generative autoencoder model with dual contradistinctive losses to improve generative autoencoder that performs simultaneous inference (reconstruction) and synthesis (sampling). Our model, named dual ... 详细信息
来源: 评论
Fostering Generalization in Single-view 3D Reconstruction by Learning a Hierarchy of Local and Global Shape Priors
Fostering Generalization in Single-view 3D Reconstruction by...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bechtold, Jan Tatarchenko, Maxim Fischer, Volker Brox, Thomas Bosch Ctr Artificial Intelligence Renningen Baden Wurttembe Germany Univ Freiburg Freiburg Germany
Single-view 3D object reconstruction has seen much progress, yet methods still struggle generalizing to novel shapes unseen during training. Common approaches predominantly rely on learned global shape priors and, hen... 详细信息
来源: 评论
Blind Image Quality Assessment via vision-Language Correspondence: A Multitask Learning Perspective
Blind Image Quality Assessment via Vision-Language Correspon...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Weixia Zhang Guangtao Zhai Ying Wei Xiaokang Yang Kede Ma MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Department of Computer Science City University of Hong Kong Shenzhen Research Institute City University of Hong Kong
We aim at advancing blind image quality assessment (BIQA), which predicts the human perception of image quality without any reference information. We develop a general and automated multitask learning scheme for BIQA ...
来源: 评论
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
DeepLSD: Line Segment Detection and Refinement with Deep Ima...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Rémi Pautrat Daniel Barath Viktor Larsson Martin R. Oswald Marc Pollefeys Department of Computer Science ETH Zurich Lund University University of Amsterdam Microsoft Mixed Reality and AI Zurich Lab
Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Trad...
来源: 评论
Optimization-Inspired Cross-Attention Transformer for Compressive Sensing
Optimization-Inspired Cross-Attention Transformer for Compre...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jiechong Song Chong Mou Shiqi Wang Siwei Ma Jian Zhang Peking University Shenzhen Graduate School Shenzhen China Peng Cheng Laboratory Shenzhen China Department of Computer Science City University of Hong Kong China School of Computer Science Peking University Beijing China
By integrating certain optimization solvers with deep neural networks, deep unfolding network (DUN) with good interpretability and high performance has attracted growing attention in compressive sensing (CS). However,...
来源: 评论
Watch or Listen: Robust Audio-Visual Speech recognition with Visual Corruption Modeling and Reliability Scoring
Watch or Listen: Robust Audio-Visual Speech Recognition with...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Joanna Hong Minsu Kim Jeongsoo Choi Yong Man Ro Image and Video Systems Lab KAIST
This paper deals with Audio-Visual Speech recognition (AVSR) under multimodal input corruption situations where audio inputs and visual inputs are both corrupted, which is not well addressed in previous research direc...
来源: 评论
Meta-Causal Learning for Single Domain Generalization
Meta-Causal Learning for Single Domain Generalization
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jin Chen Zhi Gao Xinxiao Wu Jiebo Luo Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology China Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University China Department of Computer Science University of Rochester Rochester NY USA
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains). Existing methods focus on expanding the distribution of t...
来源: 评论