咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4541-4550 订阅
排序:
A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification
A Realistic Evaluation of Semi-Supervised Learning for Fine-...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Su, Jong-Chyi Cheng, Zezhou Maji, Subhransu Univ Massachusetts Amherst Amherst MA 01003 USA
We evaluate the effectiveness of semi-supervised learning (SSL) on a realistic benchmark where data exhibits considerable class imbalance and contains images from novel classes. Our benchmark consists of two fine-grai... 详细信息
来源: 评论
DeepVecFont-v2: Exploiting Transformers to Synthesize Vector Fonts with Higher Quality
DeepVecFont-v2: Exploiting Transformers to Synthesize Vector...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yuqing Wang Yizhi Wang Longhui Yu Yuesheng Zhu Zhouhui Lian Wangxuan Institute of Computer Technology Peking University China School of Electronic and Computer Engineering Peking University China
Vector font synthesis is a challenging and ongoing problem in the fields of computer vision and computer Graphics. The recently-proposed DeepVecFont [27] achieved state-of-the-art performance by exploiting information...
来源: 评论
PLOP: Learning without Forgetting for Continual Semantic Segmentation
PLOP: Learning without Forgetting for Continual Semantic Seg...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Douillard, Arthur Chen, Yifu Dapogny, Arnaud Cord, Matthieu Sorbonne Univ Paris France Heuritech Paris France Datakalab Paris France Valeoai Paris France
Deep learning approaches are nowadays ubiquitously used to tackle computer vision tasks such as semantic segmentation, requiring large datasets and substantial computational power. Continual learning for semantic segm... 详细信息
来源: 评论
Linguistic Structures as Weak Supervision for Visual Scene Graph Generation
Linguistic Structures as Weak Supervision for Visual Scene G...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ye, Keren Kovashka, Adriana Univ Pittsburgh Dept Comp Sci Pittsburgh PA 15260 USA
Prior work in scene graph generation requires categorical supervision at the level of triplets-subjects and objects, and predicates that relate them, either with or without bounding box information. However, scene gra... 详细信息
来源: 评论
Rotation Coordinate Descent for Fast Globally Optimal Rotation Averaging
Rotation Coordinate Descent for Fast Globally Optimal Rotati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Parra, Alvaro Chng, Shin-Fang Chin, Tat-Jun Eriksson, Anders Reid, Ian Univ Adelaide Sch Comp Sci Adelaide SA Australia Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld Australia
Under mild conditions on the noise level of the measurements, rotation averaging satisfies strong duality, which enables global solutions to be obtained via semidefinite programming (SDP) relaxation. However, generic ... 详细信息
来源: 评论
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Tran...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Huiyu Zhu, Yukun Adam, Hartwig Yuille, Alan Chen, Liang-Chieh Johns Hopkins Univ Baltimore MD 21218 USA Google Res Mountain View CA USA Google Mountain View CA 94043 USA
We present MaX-DeepLab, the first end-to-end model for panoptic segmentation. Our approach simplifies the current pipeline that depends heavily on surrogate sub-tasks and hand-designed components, such as box detectio... 详细信息
来源: 评论
Understanding Object Dynamics for Interactive Image-to-Video Synthesis
Understanding Object Dynamics for Interactive Image-to-Video...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Blattmann, Andreas Milbich, Timo Dorkenwald, Michael Ommer, Bjoern Heidelberg Univ Interdisciplinary Ctr Sci Comp HCI Heidelberg Germany
What would be the effect of locally poking a static scene? We present an approach that learns naturally-looking global articulations caused by a local manipulation at a pixel level. Training requires only videos of mo... 详细信息
来源: 评论
Automated Log-Scale Quantization for Low-Cost Deep Neural Networks
Automated Log-Scale Quantization for Low-Cost Deep Neural Ne...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Oh, Sangyun Sim, Hyeonuk Lee, Sugil Lee, Jongeun UNIST Dept Elect Engn Ulsan South Korea UNIST Dept Comp Sci & Engn Ulsan South Korea
Quantization plays an important role in deep neural network (DNN) hardware. In particular, logarithmic quantization has multiple advantages for DNN hardware implementations, and its weakness in terms of lower performa... 详细信息
来源: 评论
Dynamic Inference with Grounding Based vision and Language Models
Dynamic Inference with Grounding Based Vision and Language M...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Burak Uzkent Amanmeet Garg Wentao Zhu Keval Doshi Jingru Yi Xiaolong Wang Mohamed Omar Amazon Prime Video
Transformers have been recently utilized for vision and language tasks successfully. For example, recent image and language models with more than 200M parameters have been proposed to learn visual grounding in the pre...
来源: 评论
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lanchantin, Jack Wang, Tianlu Ordonez, Vicente Qi, Yanjun Univ Virginia Charlottesville VA 22903 USA
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a... 详细信息
来源: 评论