咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4561-4570 订阅
排序:
ANR: Articulated Neural Rendering for Virtual Avatars
ANR: Articulated Neural Rendering for Virtual Avatars
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Raj, Amit Tanke, Julian Hays, James Vo, Minh Stoll, Carsten Lassner, Christoph Georgia Tech Atlanta GA 30332 USA Univ Bonn Bonn Germany Facebook Real Labs Redmond WA USA Epic Games Potomac MA USA
The combination of traditional rendering with neural networks in Deferred Neural Rendering (DNR) [38] provides a compelling balance between computational complexity and realism of the resulting images. Using skinned m... 详细信息
来源: 评论
Learning Multi-Scale Photo Exposure Correction
Learning Multi-Scale Photo Exposure Correction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Afifi, Mahmoud Derpanis, Konstantinos G. Ommer, Bjoern Brown, Michael S. Samsung AI Ctr SAIC Toronto ON Canada York Univ N York ON Canada Heidelberg Univ Heidelberg Germany
Capturing photographs with wrong exposures remains a major source of errors in camera-based imaging. Exposure problems are categorized as either: (i) overexposed, where the camera exposure was too long, resulting in b... 详细信息
来源: 评论
Single Image Depth Prediction with Wavelet Decomposition
Single Image Depth Prediction with Wavelet Decomposition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ramamonjisoa, Michael Firman, Michael Watson, Jamie Lepetit, Vincent Turmukhambetov, Daniyar Univ Gustave Eiffel CNRS Ecole Ponts IMAGINELIGM Champs Sur Marne Marne La Vallee France Niantic San Francisco CA USA
We present a novel method for predicting accurate depths from monocular images with high efficiency. This optimal efficiency is achieved by exploiting wavelet decomposition, which is integrated in a fully differentiab... 详细信息
来源: 评论
Hierarchical Motion Understanding via Motion Programs
Hierarchical Motion Understanding via Motion Programs
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kulal, Sumith Mao, Jiayuan Aiken, Alex Wu, Jiajun Stanford Univ Stanford CA 94305 USA MIT Cambridge MA 02139 USA
Current approaches to video analysis of human motion focus on raw pixels or keypoints as the basic units of reasoning. We posit that adding higher-level motion primitives, which can capture natural coarser units of mo... 详细信息
来源: 评论
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
StyleSpace Analysis: Disentangled Controls for StyleGAN Imag...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Zongze Lischinski, Dani Shechtman, Eli Hebrew Univ Jerusalem Jerusalem Israel Adobe Res San Jose CA USA
We explore and analyze the latent style space of StyleGAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of chan... 详细信息
来源: 评论
Efficient Object Embedding for Spliced Image Retrieval
Efficient Object Embedding for Spliced Image Retrieval
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Bor-Chun Wu, Zuxuan Davis, Larry S. Lim, Ser-Nam Univ Maryland College Pk MD 20742 USA Facebook AI Menlo Pk CA 94025 USA Fudan Univ Shanghai Peoples R China
Detecting spliced images is one of the emerging challenges in computer vision. Unlike prior methods that focus on detecting low-level artifacts generated during the manipulation process, we use an image retrieval appr... 详细信息
来源: 评论
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
DART: Diversify-Aggregate-Repeat Training Improves Generaliz...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Samyak Jain Sravanti Addepalli Pawan Kumar Sahu Priyam Dey R. Venkatesh Babu Vision and AI Lab Indian Institute of Science Bangalore Indian Institute of Technology Varanasi Indian Institute of Technology Dhanbad
Generalization of Neural Networks is crucial for deploying them safely in the real world. Common training strategies to improve generalization involve the use of data augmentations, ensembling and model averaging. In ...
来源: 评论
Reciprocal Landmark Detection and Tracking with Extremely Few Annotations
Reciprocal Landmark Detection and Tracking with Extremely Fe...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Jianzhe Sahebzamani, Ghazal Luong, Christina Dezaki, Fatemeh Taheri Jafari, Mohammad Abolmaesumi, Purang Tsang, Teresa Univ British Columbia Dept Elect & Comp Engn Vancouver BC Canada Vancouver Gen Hosp Vancouver BC Canada Univ British Columbia Dept Med Vancouver BC Canada Univ British Columbia Div Cardiol Vancouver BC Canada
Localization of anatomical landmarks to perform two-dimensional measurements in echocardiography is part of routine clinical workflow in cardiac disease diagnosis. Automatic localization of those landmarks is highly d... 详细信息
来源: 评论
Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation
Differentiable SLAM-net: Learning Particle SLAM for Visual N...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Karkus, Peter Cai, Shaojun Hsu, David Natl Univ Singapore Singapore Singapore
Simultaneous localization and mapping (SLAM) remains challenging for a number of downstream applications, such as visual robot navigation, because of rapid turns, featureless walls, and poor camera quality. We introdu... 详细信息
来源: 评论
Learning Event Guided High Dynamic Range Video Reconstruction
Learning Event Guided High Dynamic Range Video Reconstructio...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Yixin Yang Jin Han Jinxiu Liang Imari Sato Boxin Shi National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University National Engineering Research Center of Visual Technology School of Computer Science Peking University Graduate School of Information Science and Technology The University of Tokyo National Institute of Informatics
Limited by the trade-off between frame rate and exposure time when capturing moving scenes with conventional cameras, frame based HDR video reconstruction suffers from scene-dependent exposure ratio balancing and ghos...
来源: 评论