咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4581-4590 订阅
排序:
PointNetLK Revisited
PointNetLK Revisited
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Xueqian Pontes, Jhony Kaesemodel Lucey, Simon Argo AI Pittsburgh PA 15222 USA Univ Adelaide Adelaide SA Australia Carnegie Mellon Univ Pittsburgh PA 15213 USA
We address the generalization ability of recent learning-based point cloud registration methods. Despite their success, these approaches tend to have poor performance when applied to mismatched conditions that are not... 详细信息
来源: 评论
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Correlated Input-Dependent Label Noise in Large-Scale Image ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Collier, Mark Mustafa, Basil Kokiopoulou, Efi Jenatton, Rodolphe Berent, Jesse Google AI Mountain View CA 94043 USA
Large scale image classification datasets often contain noisy labels. We take a principled probabilistic approach to modelling input-dependent, also known as heteroscedastic, label noise in these datasets. We place a ... 详细信息
来源: 评论
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
Spatially-Adaptive Pixelwise Networks for Fast Image Transla...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shaham, Tamar Rott Gharbi, Michael Zhang, Richard Shechtman, Eli Michaeli, Tomer Technion Haifa Israel Adobe Res San Jose CA USA
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation. We design the generator to be an extremely lightweight function of the full-resolution image. In fact,... 详细信息
来源: 评论
DynamicDet: A Unified Dynamic Architecture for Object Detection
DynamicDet: A Unified Dynamic Architecture for Object Detect...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zhihao Lin Yongtao Wang Jinhe Zhang Xiaojie Chu Wangxuan Institute of Computer Technology Peking University
Dynamic neural network is an emerging research topic in deep learning. With adaptive inference, dynamic models can achieve remarkable accuracy and computational efficiency. However, it is challenging to design a power...
来源: 评论
End-to-End Object Detection with Fully Convolutional Network
End-to-End Object Detection with Fully Convolutional Network
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jianfeng Song, Lin Li, Zeming Sun, Hongbin Sun, Jian Zheng, Nanning Megvii Technol Beijing Peoples R China Xi An Jiao Tong Univ Coll Artificial Intelligence Xian Peoples R China
Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes full... 详细信息
来源: 评论
LPSNet: A lightweight solution for fast panoptic segmentation
LPSNet: A lightweight solution for fast panoptic segmentatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hong, Weixiang Guo, Qingpei Zhang, Wei Chen, Jingdong Chu, Wei Ant Financial Serv Grp Hangzhou Peoples R China
Panoptic segmentation is a challenging task aiming to simultaneously segment objects (things) at instance level and background contents (stuff) at semantic level. Existing methods mostly utilize a two-stage detection ... 详细信息
来源: 评论
Radar-Camera Pixel Depth Association for Depth Completion
Radar-Camera Pixel Depth Association for Depth Completion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Long, Yunfei Morris, Daniel Liu, Xiaoming Castro, Marcos Chakravarty, Punarjay Narayanan, Praveen Michigan State Univ E Lansing MI 48824 USA Ford Motor Co Dearborn MI 48121 USA
While radar and video data can be readily fused at the detection level, fusing them at the pixel level is potentially more beneficial. This is also more challenging in part due to the sparsity of radar, but also becau... 详细信息
来源: 评论
Bush Detection for vision-based UGV Guidance in Blueberry Orchards: Data Set and Methods
Bush Detection for Vision-based UGV Guidance in Blueberry Or...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition Workshops, cvprW 2023
作者: Filipović, Vladan Stefanović, Dimitrije Pajević, Nina Grbović, Željana Djuric, Nemanja Panić, Marko BioSense Institute Novi Sad Serbia
Object detection has reached strong performance in the last decade, having seen its usage spreading to various application areas, such as medicine, transportation, sports, and others. However, one of the more underuti... 详细信息
来源: 评论
Complementary Relation Contrastive Distillation
Complementary Relation Contrastive Distillation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Jinguo Tang, Shixiang Chen, Dapeng Yu, Shijie Liu, Yakun Rong, Mingzhe Yang, Aijun Wang, Xiaohua Xi An Jiao Tong Univ Xian Peoples R China Univ Sydney Sydney NSW Australia Sensetime Grp Ltd Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
Knowledge distillation aims to transfer representation ability from a teacher model to a student model. Previous approaches focus on either individual representation distillation or inter-sample similarity preservatio... 详细信息
来源: 评论
Beyond Short Clips: End-to-End Video-Level Learning with Collaborative Memories
Beyond Short Clips: End-to-End Video-Level Learning with Col...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Xitong Fan, Haoqi Torresani, Lorenzo Davis, Larry Wang, Heng Univ Maryland College Pk MD 20742 USA Facebook AI Menlo Pk CA USA
The standard way of training video models entails sampling at each iteration a single clip from a video and optimizing the clip prediction with respect to the video-level label. We argue that a single clip may not hav... 详细信息
来源: 评论