咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4601-4610 订阅
排序:
CHMATCH: Contrastive Hierarchical Matching and Robust Adaptive Threshold Boosted Semi-Supervised Learning
CHMATCH: Contrastive Hierarchical Matching and Robust Adapti...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jianlong Wu Haozhe Yang Tian Gan Ning Ding Feijun Jiang Liqiang Nie School of Computer Science and Technology Harbin Institute of Technology Shenzhen School of Computer Science and Technology Shandong University Alibaba Group
The recently proposed FixMatch and FlexMatch have achieved remarkable results in the field of semi-supervised learning. But these two methods go to two extremes as FixMatch and FlexMatch use a pre-defined constant thr...
来源: 评论
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts
Exploring Data-Efficient 3D Scene Understanding with Contras...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hou, Ji Graham, Benjamin Niesner, Matthias Xie, Saining Tech Univ Munich Munich Germany Facebook AI Res Menlo Pk CA USA
The rapid progress in 3D scene understanding has come with growing demand for data;however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor ... 详细信息
来源: 评论
Mutual Support of Data Modalities in the Task of Sign Language recognition
Mutual Support of Data Modalities in the Task of Sign Langua...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gruber, Ivan Krnoul, Zdenek Hruz, Marek Kanis, Jakub Bohacek, Matyas Univ West Bohemia Fac Appl Sci Dept Cybernet & New Technol Informat Soc Tech 8 Plzen 30100 Czech Republic Gymnasium Jan Kepler Parlerova 2-118 Prague 16900 6 Czech Republic
This paper presents a method for automatic sign language recognition that was utilized in the cvpr 2021 ChaLearn Challenge (RGB track). Our method is composed of several approaches combined in an ensemble scheme to pe... 详细信息
来源: 评论
pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis
pi-GAN: Periodic Implicit Generative Adversarial Networks fo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chan, Eric R. Monteiro, Marco Kellnhofer, Petr Wu, Jiajun Wetzstein, Gordon Stanford Univ Stanford CA 94305 USA
We have witnessed rapid progress on 3D-aware image synthesis, leveraging recent advances in generative visual models and neural rendering. Existing approaches however fall short in two ways: first, they may lack an un... 详细信息
来源: 评论
Learning Graphs for Knowledge Transfer with Limited Labels
Learning Graphs for Knowledge Transfer with Limited Labels
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ghosh, Pallabi Saini, Nirat Davis, Larry S. Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA
Fixed input graphs are a mainstay in approaches that utilize Graph Convolution Networks (GCNs) for knowledge transfer. The standard paradigm is to utilize relationships in the input graph to transfer information using... 详细信息
来源: 评论
Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction
Bilevel Online Adaptation for Out-of-Domain Human Mesh Recon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guan, Shanyan Xu, Jingwei Wang, Yunbo Ni, Bingbing Yang, Xiaokang Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
This paper considers a new problem of adapting a pretrained model of human mesh reconstruction to out-of-domain streaming videos. However, most previous methods based on the parametric SMPL model [36] underperform in ... 详细信息
来源: 评论
Feature Representation Learning with Adaptive Displacement Generation and Transformer Fusion for Micro-Expression recognition
Feature Representation Learning with Adaptive Displacement G...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zhijun Zhai Jianhui Zhao Chengjiang Long Wenju Xu Shuangjiang He Huijuan Zhao School of Computer Science Wuhan University Wuhan Hubei China Meta Reality Labs Burlingame CA USA OPPO US Research Center InnoPeak Technology Inc Palo Alto CA USA FiberHome Telecommunication Technologies Co. Ltd Wuhan Hubei China
Micro-expressions are spontaneous, rapid and subtle facial movements that can neither be forged nor suppressed. They are very important nonverbal communication clues, but are transient and of low intensity thus diffic...
来源: 评论
LQF: Linear Quadratic Fine-Tuning
LQF: Linear Quadratic Fine-Tuning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Achille, Alessandro Golatkar, Aditya Ravichandran, Avinash Polito, Marzia Soatto, Stefano Amazon Web Serv Seattle WA 98109 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
Classifiers that are linear in their parameters, and trained by optimizing a convex loss function, have predictable behavior with respect to changes in the training data, initial conditions, and optimization. Such des... 详细信息
来源: 评论
Fine-Grained Classification with Noisy Labels
Fine-Grained Classification with Noisy Labels
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Qi Wei Lei Feng Haoliang Sun Ren Wang Chenhui Guo Yilong Yin School of Software Shandong University China School of Computer Science and Engineering Nanyang Technological University Singapore
Learning with noisy labels (LNL) aims to ensure model generalization given a label-corrupted training set. In this work, we investigate a rarely studied scenario of LNL on fine-grained datasets (LNL-FG), which is more...
来源: 评论
Spatially Consistent Representation Learning
Spatially Consistent Representation Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Roh, Byungseok Shin, Wuhyun Kim, Ildoo Kim, Sungwoong Kakao Brain Seoul South Korea
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image class... 详细信息
来源: 评论