咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4611-4620 订阅
排序:
Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction
Bilevel Online Adaptation for Out-of-Domain Human Mesh Recon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guan, Shanyan Xu, Jingwei Wang, Yunbo Ni, Bingbing Yang, Xiaokang Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
This paper considers a new problem of adapting a pretrained model of human mesh reconstruction to out-of-domain streaming videos. However, most previous methods based on the parametric SMPL model [36] underperform in ... 详细信息
来源: 评论
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zhiwen Yan Chen Li Gim Hee Lee Department of Computer Science National University of Singapore
Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the...
来源: 评论
Spatially Consistent Representation Learning
Spatially Consistent Representation Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Roh, Byungseok Shin, Wuhyun Kim, Ildoo Kim, Sungwoong Kakao Brain Seoul South Korea
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image class... 详细信息
来源: 评论
Omnimatte: Associating Objects and Their Effects in Video
Omnimatte: Associating Objects and Their Effects in Video
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lu, Erika Cole, Forrester Dekel, Tali Zisserman, Andrew Freeman, William T. Rubinstein, Michael Google Res Mountain View CA 94043 USA Univ Oxford Oxford England Weizmann Inst Sci Rehovot Israel
computer vision is increasingly effective at segmenting objects in images and videos;however, scene effects related to the objects-shadows, reflections, generated smoke, etc.-are typically overlooked. Identifying such... 详细信息
来源: 评论
Unsupervised Visible-Infrared Person Re-Identification via Progressive Graph Matching and Alternate Learning
Unsupervised Visible-Infrared Person Re-Identification via P...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Zesen Wu Mang Ye Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Research Center for Multimedia Software Institute of Artificial Intelligence School of Computer Science Wuhan University Wuhan China Hubei Luojia Laboratory Wuhan China
Unsupervised visible-infrared person re-identification is a challenging task due to the large modality gap and the unavailability of cross-modality correspondences. Cross-modality correspondences are very crucial to b...
来源: 评论
Pixel-wise Anomaly Detection in Complex Driving Scenes
Pixel-wise Anomaly Detection in Complex Driving Scenes
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Di Biase, Giancarlo Blum, Hermann Siegwart, Roland Cadena, Cesar Swiss Fed Inst Technol Zurich Switzerland
The inability of state-of-the-art semantic segmentation methods to detect anomaly instances hinders them from being deployed in safety-critical and complex applications, such as autonomous driving. Recent approaches h... 详细信息
来源: 评论
KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local Adjustment
KOALAnet: Blind Super-Resolution using Kernel-Oriented Adapt...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Soo Ye Sim, Hyeonjun Kim, Munchurl Korea Adv Inst Sci & Technol Daejeon South Korea
Blind super-resolution (SR) methods aim to generate a high quality high resolution image from a low resolution image containing unknown degradations. However, natural images contain various types and amounts of blur: ... 详细信息
来源: 评论
MIST: Multiple Instance Spatial Transformer
MIST: Multiple Instance Spatial Transformer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Angles, Baptiste Jin, Yuhe Kornblith, Simon Tagliasacchi, Andrea Yi, Kwang Moo Univ Victoria Victoria BC Canada Univ British Columbia Vancouver BC Canada Google Res Mountain View CA USA
We propose a deep network that can be trained to tackle image reconstruction and classification problems that involve detection of multiple object instances, without any supervision regarding their whereabouts. The ne... 详细信息
来源: 评论
NeuralFusion: Online Depth Fusion in Latent Space
NeuralFusion: Online Depth Fusion in Latent Space
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Weder, Silvan Schonberger, Johannes L. Pollefeys, Marc Oswald, Martin R. Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Microsoft Mixed Real & AI Zurich Lab Zurich Switzerland
We present a novel online depth map fusion approach that learns depth map aggregation in a latent feature space. While previous fusion methods use an explicit scene representation like signed distance functions (SDFs)... 详细信息
来源: 评论
Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs
Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hui-Po Yu, Ning Fritz, Mario CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany Max Planck Inst Informat Saarland Informat Campus Saarbrucken Germany Univ Maryland College Pk MD 20742 USA
While Generative Adversarial Networks (GANs) show increasing performance and the level of realism is becoming indistinguishable from natural images, this also comes with high demands on data and computation. We show t... 详细信息
来源: 评论