咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4631-4640 订阅
排序:
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNet V2: Sparse Feature Reactivation for Deep Network...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Le Jiang, Haojun Cai, Ruojin Wang, Yulin Song, Shiji Huang, Gao Tian, Qi Tsinghua Univ Dept Automat Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China Cornell Univ Ithaca NY 14853 USA Huawei Cloud & AI Ithaca NY USA
Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet [14] has shown that this mechanism can befiirther improved if ... 详细信息
来源: 评论
Animating General Image with Large Visual Motion Model
Animating General Image with Large Visual Motion Model
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Dengsheng Chen Xiaoming Wei Xiaolin Wei Meituan Beijing China
We present the pioneering Large Visual Motion Model (LVMM), meticulously engineered to analyze the intrinsic dynamics encapsulated within real-world imagery. Our model, fortified with a wealth of prior knowledge extra... 详细信息
来源: 评论
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsu...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Mikhail Kennerley Jian-Gang Wang Bharadwaj Veeravalli Robby T. Tan Department of Electrical and Computer Engineering National University of Singapore Institute for Infocomm Research A*STAR
Object detection at night is a challenging problem due to the absence of night image annotations. Despite several domain adaptation methods, achieving high-precision results remains an issue. False-positive error prop...
来源: 评论
LayoutDiffusion: Controllable Diffusion Model for Layout-to-Image Generation
LayoutDiffusion: Controllable Diffusion Model for Layout-to-...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Guangcong Zheng Xianpan Zhou Xuewei Li Zhongang Qi Ying Shan Xi Li College of Computer Science & Technology Zhejiang University Polytechnic Institute Zhejiang University ARC Lab Tencent PCG Shanghai Institute for Advanced Study of Zhejiang University Shanghai AI Lab Zhejiang-Singapore Innovation and AI Joint Research Lab
Recently, diffusion models have achieved great success in image synthesis. However, when it comes to the layout-to-image generation where an image often has a complex scene of multiple objects, how to make strong cont...
来源: 评论
Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection
Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Det...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Chang Xu Jian Ding Jinwang Wang Wen Yang Huai Yu Lei Yu Gui-Song Xia School of Electronic Information Wuhan University School of Computer Science Wuhan University
Detecting arbitrarily oriented tiny objects poses intense challenges to existing detectors, especially for label assignment. Despite the exploration of adaptive label assignment in recent oriented object detectors, th...
来源: 评论
Visualizing Adapted Knowledge in Domain Transfer
Visualizing Adapted Knowledge in Domain Transfer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hou, Yunzhong Zheng, Liang Australian Natl Univ Canberra ACT Australia
A source model trained on source data and a target model learned through unsupervised domain adaptation (UDA) usually encode different knowledge. To understand the adaptation process, we portray their knowledge differ... 详细信息
来源: 评论
FACESEC: A Fine-grained Robustness Evaluation Framework for Face recognition Systems
FACESEC: A Fine-grained Robustness Evaluation Framework for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tong, Liang Chen, Zhengzhang Ni, Jingchao Cheng, Wei Song, Dongjin Chen, Haifeng Vorobeychik, Yevgeniy Washington Univ St Louis MO 14263 USA NEC Labs Amer Princeton NJ 08540 USA Univ Connecticut Storrs CT USA
We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixe... 详细信息
来源: 评论
Progressive Semantic Segmentation
Progressive Semantic Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chuong Huynh Anh Tuan Tran Khoa Luu Minh Hoai VinAI Res Hanoi Vietnam VinUniversity Hanoi Vietnam Univ Arkansas Fayetteville AR 72701 USA SUNY Stony Brook Stony Brook NY 11790 USA
The objective of this work is to segment high-resolution images without overloading GPU memory usage or losing the fine details in the output segmentation map. The memory constraint means that we must either downsampl... 详细信息
来源: 评论
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles
AdvSim: Generating Safety-Critical Scenarios for Self-Drivin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jingkang Pun, Ava Tu, James Manivasagam, Sivabalan Sadat, Abbas Casas, Sergio Ren, Mengye Urtasun, Raquel Univ Toronto Toronto ON Canada Uber ATG Pittsburgh PA 15201 USA Univ Waterloo Waterloo ON Canada
As self-driving systems become better, simulating scenarios where the autonomy stack may fail becomes more important. Traditionally, those scenarios are generated for a few scenes with respect to the planning module t... 详细信息
来源: 评论
SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning
SelfAugment: Automatic Augmentation Policies for Self-Superv...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Reed, Colorado J. Metzger, Sean Srinivas, Aravind Darrell, Trevor Keutzer, Kurt Univ Calif Berkeley BAIR Dept Comp Sci Berkeley CA 94720 USA Weill Neurosci Inst Grad Grp Bioengn Berkeley UCSF San Francisco CA USA UCSF Neurol Surg San Francisco CA USA
A common practice in unsupervised representation learning is to use labeled data to evaluate the quality of the learned representations. This supervised evaluation is then used to guide critical aspects of the trainin... 详细信息
来源: 评论