咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4651-4660 订阅
排序:
Frame-Consistent Recurrent Video Deraining with Dual-Level Flow  32
Frame-Consistent Recurrent Video Deraining with Dual-Level F...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Wenhan Liu, Jiaying Feng, Jiashi Natl Univ Singapore Dept ECE Singapore 119077 Singapore Peking Univ Inst Comp Sci & Technol Beijing 100871 Peoples R China
In this paper, we address the problem of rain removal from videos by proposing a more comprehensive framework that considers the additional degradation factors in real scenes neglected in previous works. The proposed ... 详细信息
来源: 评论
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
MovieChat: From Dense Token to Sparse Memory for Long Video ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Song, Enxin Chai, Wenhao Wang, Guanhong Zhang, Yucheng Zhou, Haoyang Wu, Feiyang Chi, Haozhe Guo, Xun Ye, Tian Zhang, Yanting Lu, Yan Hwang, Jenq-Neng Wang, Gaoang Zhejiang Univ Hangzhou Peoples R China Univ Washington Seattle WA 98195 USA Microsoft Res Asia Florence Italy Hong Kong Univ Sci & Technol GZ Hong Kong Peoples R China Donghua Univ Shanghai Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China
Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle vi... 详细信息
来源: 评论
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
OrphicX: A Causality-Inspired Latent Variable Model for Inte...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Wanyu Lan, Hao Wang, Hao Li, Baochun Hong Kong Polytech Univ Hong Kong Peoples R China Univ Toronto Toronto ON Canada Rutgers State Univ New Brunswick NJ USA
This paper proposes a new eXplanation framework, called OrphicX, for generating causal explanations for any graph neural networks (GNNs) based on learned latent causal factors. Specifically, we construct a distinct ge... 详细信息
来源: 评论
Weak-to-Strong 3D Object Detection with X-Ray Distillation
Weak-to-Strong 3D Object Detection with X-Ray Distillation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gambashidze, Alexander Dadukin, Aleksandr Golyadkin, Maxim Razzhivina, Maria Makarov, Ilya Artificial Intelligence Res Inst Barcelona Spain HSE Univ Moscow Russia ISP RAS Moscow Russia
This paper addresses the critical challenges of sparsity and occlusion in LiDAR-based 3D object detection. Current methods often rely on supplementary modules or specific architectural designs, potentially limiting th... 详细信息
来源: 评论
Partial Class Activation Attention for Semantic Segmentation
Partial Class Activation Attention for Semantic Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Sun-Ao Xie, Hongtao Xu, Hai Zhang, Yongdong Tian, Qi Univ Sci & Technol China Hefei Peoples R China Huawei Cloud & AI Shenzhen Peoples R China
Current attention-based methods for semantic segmentation mainly model pixel relation through pairwise affinity and coarse segmentation. For the first time, this paper explores modeling pixel relation via Class Activa... 详细信息
来源: 评论
CityDreamer: Compositional Generative Model of Unbounded 3D Cities
CityDreamer: Compositional Generative Model of Unbounded 3D ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xie, Haozhe Chen, Zhaoxi Hong, Fangzhou Liu, Ziwei Nanyang Technol Univ S Lab Singapore Singapore
3D city generation is a desirable yet challenging task, since humans are more sensitive to structural distortions in urban environments. Additionally, generating 3D cities is more complex than 3D natural scenes since ... 详细信息
来源: 评论
Hard Mixtures of Experts for Large ScaleWeakly Supervised vision  30
Hard Mixtures of Experts for Large ScaleWeakly Supervised Vi...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gross, Sam Ranzato, Marc'Aurelio Szlam, Arthur Facebook AI Res Menlo Pk CA USA
Training convolutional networks (CNN's) that fit on a single GPU with minibatch stochastic gradient descent has become effective in practice. However, there is still no effective method for training large CNN'... 详细信息
来源: 评论
Learning Pixel-Level Distinctions for Video Highlight Detection
Learning Pixel-Level Distinctions for Video Highlight Detect...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wei, Fanyue Wang, Biao Ge, Tiezheng Jiang, Yuning Li, Wen Duan, Lixin UESTC Sch Comp Sci & Engn Chengdu Sichuan Peoples R China UESTC Shenzhen Inst Adv Study Chengdu Sichuan Peoples R China Alibaba Grp Hangzhou Peoples R China
The goal of video highlight detection is to select the most attractive segments from a long video to depict the most interesting parts of the video. Existing methods typically focus on modeling relationship between di... 详细信息
来源: 评论
Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness
Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversari...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Sibo Zhang, Jie Yuan, Zheng Shan, Shiguang Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
Large-scale pre-trained vision-language models like CLIP have demonstrated impressive performance across various tasks, and exhibit remarkable zero-shot generalization capability, while they are also vulnerable to imp... 详细信息
来源: 评论
Scribbler: Controlling Deep Image Synthesis with Sketch and Color  30
Scribbler: Controlling Deep Image Synthesis with Sketch and ...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sangkloy, Patsorn Lu, Jingwan Fang, Chen Yu, Fisher Hays, James Georgia Inst Technol Atlanta GA 30332 USA Adobe Res San Jose CA USA Princeton Univ Princeton NJ 08544 USA
Several recent works have used deep convolutional networks to generate realistic imagery. These methods sidestep the traditional computer graphics rendering pipeline and instead generate imagery at the pixel level by ... 详细信息
来源: 评论