咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4661-4670 订阅
排序:
Self-Distillation from the Last Mini-Batch for Consistency Regularization
Self-Distillation from the Last Mini-Batch for Consistency R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shen, Yiqing Xu, Liwu Yang, Yuzhe Li, Yaqian Guo, Yandong Shanghai Jiao Tong Univ Shanghai Peoples R China OPPO Res Inst Shanghai Peoples R China
Knowledge distillation (KD) shows a bright promise as a powerful regularization strategy to boost generalization ability by leveraging learned sample-level soft targets. Yet, employing a complex pre-trained teacher ne... 详细信息
来源: 评论
Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning  32
Heavy Rain Image Restoration: Integrating Physics Model and ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Ruoteng Cheong, Loong-Fah Tan, Robby T. Natl Univ Singapore Singapore Singapore Yale NUS Coll Singapore Singapore
Most deraining works focus on rain streaks removal but they cannot deal adequately with heavy rain images. In heavy rain, streaks are strongly visible, dense rain accumulation or rain veiling effect significantly wash... 详细信息
来源: 评论
Deep Modular Co-Attention Networks for Visual Question Answering  32
Deep Modular Co-Attention Networks for Visual Question Answe...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Zhou Yu, Jun Cui, Yuhao Tao, Dacheng Tian, Qi Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou Peoples R China Univ Sydney FEIT Sch Comp Sci UBTECH Sydney AI Ctr Sydney NSW Australia Huawei Noahs Ark Lab Shenzhen Peoples R China
Visual Question Answering (VQA) requires a fine-grained and simultaneous understanding of both the visual content of images and the textual content of questions. Therefore, designing an effective 'co-attention'... 详细信息
来源: 评论
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion
Robust Instance Segmentation through Reasoning about Multi-O...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yuan, Xiaoding Kortylewski, Adam Sun, Yihong Yuille, Alan Tongji Univ Shanghai Peoples R China Johns Hopkins Univ Baltimore MD 21218 USA
Analyzing complex scenes with Deep Neural Networks is a challenging task, particularly when images contain multiple objects that partially occlude each other. Existing approaches to image analysis mostly process objec... 详细信息
来源: 评论
TIM: A Time Interval Machine for Audio-Visual Action recognition
TIM: A Time Interval Machine for Audio-Visual Action Recogni...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chalk, Jacob Huh, Jaesung Kazakos, Evangelos Zisserman, Andrew Damen, Dima Univ Bristol Bristol Avon England Univ Oxford VGG Oxford England Czech Tech Univ Prague Czech Republic
Diverse actions give rise to rich audio-visual signals in long videos. Recent works showcase that the two modalities of audio and video exhibit different temporal extents of events and distinct labels. We address the ... 详细信息
来源: 评论
360MonoDepth: High-Resolution 360° Monocular Depth Estimation
360MonoDepth: High-Resolution 360° Monocular Depth Estimati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Rey-Area, Manuel Yuan, Mingze Richardt, Christian Univ Bath Bath Avon England
360 degrees cameras can capture complete environments in a single shot, which makes 360 degrees imagery alluring in many computer vision tasks. However, monocular depth estimation remains a challenge for 360 degrees d... 详细信息
来源: 评论
MS2DG-Net: Progressive Correspondence Learning via Multiple Sparse Semantics Dynamic Graph
MS<SUP>2</SUP>DG-Net: Progressive Correspondence Learning vi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dai, Luanyuan Liu, Yizhang Ma, Jiayi Wei, Lifang Lai, Taotao Yang, Changcai Chen, Riqing Fujian Agr & Forestry Univ Fuzhou Peoples R China Tongji Univ Shanghai Peoples R China Wuhan Univ Wuhan Peoples R China Minjiang Univ Fuzhou Peoples R China
Establishing superior-quality correspondences in an image pair is pivotal to many subsequent computer vision tasks. Using Euclidean distance between correspondences to find neighbors and extract local information is a... 详细信息
来源: 评论
CLIP-Event: Connecting Text and Images with Event Structures
CLIP-Event: Connecting Text and Images with Event Structures
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Manling Xu, Ruochen Wang, Shuohang Zhou, Luowei Lin, Xudong Zhu, Chenguang Zeng, Michael Ji, Heng Chang, Shih-Fu Univ Illinois Champaign IL 61820 USA Microsoft Res Redmond WA USA Columbia Univ New York NY 10027 USA Microsoft Redmond WA USA
vision-language (V+L) pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models pri... 详细信息
来源: 评论
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching
CFNet: Cascade and Fused Cost Volume for Robust Stereo Match...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shen, Zhelun Dai, Yuchao Rao, Zhibo Northwestern Polytech Univ Xian Peoples R China Peking Univ Beijing Peoples R China
Recently, the ever-increasing capacity of large-scale annotated datasets has led to profound progress in stereo matching. However, most of these successes are limited to a specific dataset and cannot generalize well t... 详细信息
来源: 评论
SimMatch: Semi-supervised Learning with Similarity Matching
SimMatch: Semi-supervised Learning with Similarity Matching
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zheng, Mingkai You, Shan Huang, Lang Wang, Fei Qian, Chen Xu, Chang Univ Sydney Fac Engn Sch Comp Sci Sydney NSW Australia SenseTime Res Hong Kong Peoples R China Univ Tokyo Tokyo Japan Univ Sci & Technol China Hefei Peoples R China
Learning with few labeled data has been a longstanding problem in the computer vision and machine learning research community. In this paper, we introduced a new semi-supervised learning framework, SimMatch, which sim... 详细信息
来源: 评论