咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4821-4830 订阅
排序:
Exploring Data Aggregation in Policy Learning for vision-based Urban Autonomous Driving
Exploring Data Aggregation in Policy Learning for Vision-bas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Prakash, Aditya Behl, Aseem Ohn-Bar, Eshed Chitta, Kashyap Geiger, Andreas Max Planck Inst Intelligent Syst Tubingen Germany Univ Tubingen Tubingen Germany Boston Univ Boston MA USA
Data aggregation techniques can significantly improve vision-based policy learning within a training environment, e.g., learning to drive in a specific simulation condition. However, as on-policy data is sequentially ... 详细信息
来源: 评论
Geometric Anchor Correspondence Mining with Uncertainty Modeling for Universal Domain Adaptation
Geometric Anchor Correspondence Mining with Uncertainty Mode...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Liang Lou, Yihang He, Jianzhong Bai, Tao Deng, Minghua Peking Univ Sch Math Sci Beijing Peoples R China Huawei Technol Intelligent Vis Dept Beijing Peoples R China
Universal domain adaptation (UniDA) aims to transfer the knowledge learned from a label-rich source domain to a label-scarce target domain without any constraints on the label space. However, domain shift and category... 详细信息
来源: 评论
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Dave Zhenyu Gholami, Ali Niesner, Matthias Chang, Angel X. Tech Univ Munich Munich Germany Simon Fraser Univ Burnaby BC Canada
We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene;the expected output is the bounding boxes along with the descriptions for the underly... 详细信息
来源: 评论
Hot-started NAS for Task-specific Embedded Applications
Hot-started NAS for Task-specific Embedded Applications
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hendrickx, Lotte Van Ranst, Wiebe Goedeme, Toon Katholieke Univ Leuven EAVISE PSI ESAT Jan Pieter De Nayerlaan 5 B-2860 St Katelijne Waver Belgium
Neural architecture search (NAS) has proven its worth in discovering new neural networks. Combining the possibility to satisfy multiple objectives in one search, it is especially useful for getting the most out of emb... 详细信息
来源: 评论
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches
SketchEdit: Mask-Free Local Image Manipulation with Partial ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zeng, Yu Lin, Zhe Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21218 USA Adobe Res San Jose CA USA
Sketch-based image manipulation is an interactive image editing task to modify an image based on input sketches from users. Existing methods typically formulate this task as a conditional inpainting problem, which req... 详细信息
来源: 评论
End-to-End Semi-Supervised Learning for Video Action Detection
End-to-End Semi-Supervised Learning for Video Action Detecti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kumar, Akash Rawat, Yogesh Singh Univ Cent Florida Ctr Res Comp Vis Orlando FL 32816 USA
In this work, we focus on semi-supervised learning for video action detection which utilizes both labeled as well as unlabeled data. We propose a simple end-to-end consistency based approach which effectively utilizes... 详细信息
来源: 评论
Improved Noise2Noise Denoising with Limited Data
Improved Noise2Noise Denoising with Limited Data
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Calvarons, Adria Font Tech Univ Munich Munich Germany
Deep learning methods have proven to be very effective for the task of image denoising even when clean reference images are not available. In particular, Noise2Noise, which requires pairs of noisy images during the tr... 详细信息
来源: 评论
Gradually Vanishing Bridge for Adversarial Domain Adaptation
Gradually Vanishing Bridge for Adversarial Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cui, Shuhao Wang, Shuhui Zhuo, Junbao Su, Chi Huang, Qingming Tian, Qi Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Kingsoft Cloud Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China Noahs Ark Lab Huawei Technol Beijing Peoples R China
In unsupervised domain adaptation, rich domain-specific characteristics bring great challenge to learn domain-invariant representations. However, domain discrepancy is considered to be directly minimized in existing s... 详细信息
来源: 评论
Dynamic Prototype Convolution Network for Few-Shot Semantic Segmentation
Dynamic Prototype Convolution Network for Few-Shot Semantic ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jie Bao, Yanqi Xie, Guo-Sen Xiong, Huan Sonke, Jan-Jakob Gavves, Efstratios Univ Amsterdam Amsterdam Netherlands Northeastern Univ Shenyang Peoples R China Netherlands Canc Inst Amsterdam Netherlands Nanjing Univ Sci & Technol Nanjing Peoples R China Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates
The key challenge for few-shot semantic segmentation (FSS) is how to tailor a desirable interaction among support and query features and/or their prototypes, under the episodic training scenario. Most existing FSS met... 详细信息
来源: 评论