咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,139 篇 工学
    • 7,674 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 580 篇 软件工程
    • 376 篇 电气工程
    • 252 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,194 篇 医学
    • 3,190 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 481 篇 理学
    • 216 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 55 篇 数学
    • 29 篇 统计学(可授理学、...
    • 24 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4881-4890 订阅
排序:
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Roy, Subhankar Krivosheev, Evgeny Zhong, Zhun Sebe, Nicu Ricci, Elisa Univ Trento Trento TN Italy Fdn Bruno Kessler Povo TN Italy
In this paper we address multi-target domain adaptation (MTDA), where given one labeled source dataset and multiple unlabeled target datasets that differ in data distributions, the task is to learn a robust predictor ... 详细信息
来源: 评论
What If We Only Use Real Datasets for Scene Text recognition? Toward Scene Text recognition With Fewer Labels
What If We Only Use Real Datasets for Scene Text Recognition...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Baek, Jeonghun Matsui, Yusuke Aizawa, Kiyoharu Univ Tokyo Tokyo Japan
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer... 详细信息
来源: 评论
NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis
NeRV: Neural Reflectance and Visibility Fields for Relightin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Srinivasan, Pratul P. Deng, Boyang Zhang, Xiuming Tancik, Matthew Mildenhall, Ben Barron, Jonathan T. Google Res Mountain View CA 94043 USA MIT Cambridge MA 02139 USA Univ Calif Berkeley Berkeley CA USA
We present a method that takes as input a set of images of a scene illuminated by unconstrained known lighting, and produces as output a 3D representation that can be rendered from novel viewpoints under arbitrary lig... 详细信息
来源: 评论
Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation
Background-Aware Pooling and Noise-Aware Loss for Weakly-Sup...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Oh, Youngmin Kim, Beomjun Ham, Bumsub Yonsei Univ Sch Elect & Elect Engn Seoul South Korea
We address the problem of weakly-supervised semantic segmentation (WSSS) using bounding box annotations. Although object bounding boxes are good indicators to segment corresponding objects, they do not specify object ... 详细信息
来源: 评论
Learning a Proposal Classifier for Multiple Object Tracking
Learning a Proposal Classifier for Multiple Object Tracking
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dai, Peng Weng, Renliang Choi, Wongun Zhang, Changshui He, Zhangping Ding, Wei Tsinghua Univ Beijing Peoples R China Aibee Inc Beijing Peoples R China
The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashi... 详细信息
来源: 评论
Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster Object Detection on Drone Images
Adaptive Sparse Convolutional Networks with Global Context E...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Bowei Du Yecheng Huang Jiaxin Chen Di Huang State Key Laboratory of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China Hangzhou Innovation Institute Beihang University Hangzhou China
Object detection on drone images with low-latency is an important but challenging task on the resource-constrained unmanned aerial vehicle (UAV) platform. This paper investigates optimizing the detection head based on...
来源: 评论
MTLSegFormer: Multi-task Learning with Transformers for Semantic Segmentation in Precision Agriculture
MTLSegFormer: Multi-task Learning with Transformers for Sema...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition Workshops, cvprW 2023
作者: Goncalves, Diogo Nunes Marcato, Jose Zamboni, Pedro Pistori, Hemerson Li, Jonathan Nogueira, Keiller Goncalves, Wesley Nunes Federal University of Mato Grosso Do Sul Faculty of Computer Science Av. Costa e Silva Campo Grande79070-900 MS Brazil Federal University of Mato Grosso Do Sul Faculty of Engineering Architecture and Urbanism and Geography Av. Costa e Silva Campo Grande79070-900 MS Brazil Dom Bosco Catholic University INOVISAO Avenida Tamandaré 6000 Campo Grande79117-900 MS Brazil University of Waterloo Department of Geography and Environmental Management WaterlooONN2L 3G1 Canada University of Stirling Scotland StirlingFK9 4LA United Kingdom
Multi-task learning has proven to be effective in improving the performance of correlated tasks. Most of the existing methods use a backbone to extract initial features with independent branches for each task, and the... 详细信息
来源: 评论
FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point Clouds
FESTA: Flow Estimation via Spatial-Temporal Attention for Sc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Haiyan Pang, Jiahao Lodhi, Muhammad A. Tian, Yingli Tian, Dong InterDigital Wilmington DE 19809 USA CUNY City Coll New York NY 10031 USA
Scene flow depicts the dynamics of a 3D scene, which is critical for various applications such as autonomous driving, robot navigation, AR/VR, etc. Conventionally, scene flow is estimated from dense/regular RGB video ... 详细信息
来源: 评论
Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis
Revisiting The Evaluation of Class Activation Mapping for Ex...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Poppi, Samuele Cornia, Marcella Baraldi, Lorenzo Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy
As the request for deep learning solutions increases, the need for explainability is even more fundamental. In this setting, particular attention has been given to visualization techniques, that try to attribute the r... 详细信息
来源: 评论
A Dual Iterative Refinement Method for Non-rigid Shape Matching
A Dual Iterative Refinement Method for Non-rigid Shape Match...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiang, Rui Lai, Rongjie Zhao, Hongkai UC Dept Math Irvine CA 92697 USA Rensselaer Polytech Inst Dept Math Troy NY 12181 USA Duke Univ Dept Math Durham NC 27706 USA
In this work, a robust and efficient dual iterative refinement (DIR) method is proposed for dense correspondence between two nearly isometric shapes. The key idea is to use dual information, such as spatial and spectr... 详细信息
来源: 评论