咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4911-4920 订阅
排序:
HerosNet: Hyperspectral Explicable Reconstruction and Optimal Sampling Deep Network for Snapshot Compressive Imaging
HerosNet: Hyperspectral Explicable Reconstruction and Optima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Xuanyu Zhang, Yongbing Xiong, Ruiqin Sun, Qilin Zhang, Jian Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Harbin Inst Technol Shenzhen Peoples R China Peking Univ Beijing Peoples R China Chinese Univ Hong Kong Shenzhen Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Hyperspectral imaging is an essential imaging modality for a wide range of applications, especially in remote sensing, agriculture, and medicine. Inspired by existing hyperspectral cameras that are either slow, expens... 详细信息
来源: 评论
Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation
Non-Salient Region Object Mining for Weakly Supervised Seman...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yao, Yazhou Chen, Tao Xie, Guo-Sen Zhang, Chuanyi Shen, Fumin Wu, Qi Tang, Zhenmin Zhang, Jian Nanjing Univ Sci & Technol Nanjing Peoples R China Mohamed bin Zayed Univ AI Abu Dhabi U Arab Emirates Univ Elect Sci & Technol China Chengdu Peoples R China Univ Adelaide Adelaide SA Australia Univ Technol Sydney Sydney NSW Australia
Semantic segmentation aims to classify every pixel of an input image. Considering the difficulty of acquiring dense labels, researchers have recently been resorting to weak labels to alleviate the annotation burden of... 详细信息
来源: 评论
Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning
Removing the Background by Adding the Background: Towards Ba...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jinpeng Gao, Yuting Li, Ke Lin, Yiqi Ma, Andy J. Cheng, Hao Peng, Pai Huang, Feiyue Ji, Rongrong Sun, Xing Sun Yat Sen Univ Guangzhou Guangdong Peoples R China Tencent Youtu Lab Shenzhen Guangdong Peoples R China Xiamen Univ Xiamen Fujian Peoples R China Peng Cheng Lab Shenzhen Guangdong Peoples R China
Self-supervised learning has shown great potentials in improving the video representation ability of deep neural networks by getting supervision from the data itself. However, some of the current methods tend to cheat... 详细信息
来源: 评论
Differentiable Rendering-based Pose-Conditioned Human Image Generation
Differentiable Rendering-based Pose-Conditioned Human Image ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Horiuchi, Yusuke Simo-Serra, Edgar Iizuka, Satoshi Ishikawa, Hiroshi Waseda Univ Tokyo Japan Univ Tsukuba Tsukuba Ibaraki Japan
Conditional human image generation, or generation of human images with specified pose based on one or more reference images, is an inherently ill-defined problem, as there can be multiple plausible appearance for part... 详细信息
来源: 评论
Hierarchical Pyramid Diverse Attention Networks for Face recognition
Hierarchical Pyramid Diverse Attention Networks for Face Rec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Qiangchang Wu, Tianyi Zheng, He Guo, Guodong West Virginia Univ Morgantown WV 26506 USA Baidu Res Inst Deep Learning Beijing Peoples R China Natl Engn Lab Deep Learning Technol & Applicat Beijing Peoples R China Baidu Beijing Peoples R China
Deep learning has achieved a great success in face recognition (FR), however, few existing models take hierarchical multi-scale local features into consideration. In this work, we propose a hierarchical pyramid divers... 详细信息
来源: 评论
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Align and Prompt: Video-and-Language Pre-training with Entit...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Dongxu Li, Junnan Li, Hongdong Niebles, Juan Carlos Hoi, Steven C. H. Salesforce Res San Francisco CA 94105 USA Australian Natl Univ Canberra ACT Australia
Video-and-language pre-training has shown promising improvements on various downstream tasks. Most previous methods capture cross-modal interactions with a standard transformer-based multimodal encoder, not fully addr... 详细信息
来源: 评论
D2-Net: A Trainable CNN for Joint Description and Detection of Local Features  32
D2-Net: A Trainable CNN for Joint Description and Detection ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dusmanu, Mihai Rocco, Ignacio Pajdla, Tomas Pollefeys, Marc Sivic, Josef Torii, Akihiko Sattler, Torsten PSL Res Univ CNRS ENS DI F-75005 Paris France Inria Rocquencourt France Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland CTU CIIRC Prague Czech Republic Microsoft Redmond WA USA Tokyo Inst Technol Tokyo Japan Chalmers Univ Technol Gothenburg Sweden
In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simul... 详细信息
来源: 评论
Discovering Objects that Can Move
Discovering Objects that Can Move
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bao, Zhipeng Tokmakov, Pavel Jabri, Allan Wang, Yu-Xiong Gaidon, Adrien Hebert, Martial CMU Pittsburgh PA 15213 USA Toyota Res Inst Tokyo Japan Univ Calif Berkeley Berkeley CA USA UIUC Champaign IL USA TRI Tokyo Japan
This paper studies the problem of object discovery - separating objects from the background without manual labels. Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels int... 详细信息
来源: 评论
MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
MobileDets: Searching for Object Detection Architectures for...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiong, Yunyang Liu, Hanxiao Gupta, Suyog Akin, Berkin Bender, Gabriel Wang, Yongzhe Kindermans, Pieter-Jan Tan, Mingxing Singh, Vikas Chen, Bo Univ Wisconsin Madison WI 53705 USA Google Mountain View CA 94043 USA
Inverted bottleneck layers, which are built upon depthwise convolutions, have been the predominant building blocks in state-of-the-art object detection models on mobile devices. In this work, we investigate the optima... 详细信息
来源: 评论
Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
Cross-Domain Adaptive Clustering for Semi-Supervised Domain ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Jichang Li, Guanbin Shi, Yemin Yu, Yizhou Univ Hong Kong Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Deepwise AI Lab Beijing Peoples R China
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly di... 详细信息
来源: 评论