咨询与建议

限定检索结果

文献类型

  • 11,745 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 11,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,136 篇 工学
    • 7,671 篇 计算机科学与技术...
    • 804 篇 机械工程
    • 577 篇 软件工程
    • 376 篇 电气工程
    • 249 篇 控制科学与工程
    • 208 篇 光学工程
    • 85 篇 生物工程
    • 83 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 电子科学与技术(可...
    • 21 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 安全科学与工程
    • 10 篇 网络空间安全
    • 8 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
  • 3,191 篇 医学
    • 3,187 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
  • 478 篇 理学
    • 213 篇 物理学
    • 203 篇 系统科学
    • 88 篇 生物学
    • 52 篇 数学
    • 29 篇 统计学(可授理学、...
    • 21 篇 化学
  • 55 篇 管理学
    • 29 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 5,434 篇 computer vision
  • 2,516 篇 training
  • 2,087 篇 pattern recognit...
  • 1,621 篇 computational mo...
  • 1,435 篇 visualization
  • 1,306 篇 three-dimensiona...
  • 1,060 篇 semantics
  • 981 篇 codes
  • 968 篇 benchmark testin...
  • 898 篇 computer archite...
  • 884 篇 deep learning
  • 762 篇 task analysis
  • 681 篇 feature extracti...
  • 536 篇 face recognition
  • 527 篇 conferences
  • 515 篇 transformers
  • 515 篇 neural networks
  • 479 篇 object detection
  • 466 篇 image segmentati...
  • 454 篇 cameras

机构

  • 168 篇 univ sci & techn...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 143 篇 carnegie mellon ...
  • 135 篇 chinese univ hon...
  • 112 篇 peng cheng lab p...
  • 108 篇 zhejiang univ pe...
  • 97 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 92 篇 sensetime res pe...
  • 88 篇 shanghai ai lab ...
  • 85 篇 zhejiang univers...
  • 84 篇 shanghai jiao to...
  • 78 篇 peng cheng labor...
  • 77 篇 university of sc...
  • 77 篇 alibaba grp peop...
  • 76 篇 univ hong kong p...
  • 76 篇 tech univ munich...
  • 76 篇 stanford univ st...
  • 73 篇 university of ch...

作者

  • 76 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 44 篇 yang yi
  • 40 篇 loy chen change
  • 34 篇 tao dacheng
  • 32 篇 liu yang
  • 32 篇 chen chen
  • 30 篇 zhou jie
  • 30 篇 tian qi
  • 30 篇 sun jian
  • 28 篇 zha zheng-jun
  • 27 篇 qi tian
  • 26 篇 li xin
  • 26 篇 vasconcelos nuno
  • 26 篇 ying shan
  • 25 篇 liu xiaoming
  • 25 篇 luc van gool
  • 25 篇 boxin shi
  • 24 篇 zheng wei-shi

语言

  • 11,746 篇 英文
  • 7 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023"
11753 条 记 录,以下是4921-4930 订阅
排序:
Why Object Detectors Fail: Investigating the Influence of the Dataset
Why Object Detectors Fail: Investigating the Influence of th...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Miller, Dimity Goode, Georgia Bennie, Callum Moghadam, Peyman Jurdak, Raja Queensland Univ Technol Brisbane Qld Australia CSIRO Data61 Robot & Autonomous Syst Melbourne Vic Australia
A false negative in object detection describes an object that was not correctly localised and classified by a detector. In prior work, we introduced five 'false negative mechanisms' that identify the specific ... 详细信息
来源: 评论
Investigating Tradeoffs in Real-World Video Super-Resolution
Investigating Tradeoffs in Real-World Video Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chan, Kelvin C. K. Zhou, Shangchen Xu, Xiangyu Loy, Chen Change Nanyang Technol Univ S Lab Singapore Singapore
The diversity and complexity of degradations in real-world video super-resolution (VSR) pose non-trivial challenges in inference and training. First, while long-term propagation leads to improved performance in cases ... 详细信息
来源: 评论
OBoW: Online Bag-of-Visual-Words Generation for Self-Supervised Learning
OBoW: Online Bag-of-Visual-Words Generation for Self-Supervi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gidaris, Spyros Bursuc, Andrei Puy, Gilles Komodakis, Nikos Cord, Matthieu Perez, Patrick Valeo Ai Paris France Univ Crete Iraklion Greece Sorbonne Univ Paris France
Learning image representations without human supervision is an important and active research field. Several recent approaches have successfully leveraged the idea of making such a representation invariant under differ... 详细信息
来源: 评论
Sketch, Ground, and Refine: Top-Down Dense Video Captioning
Sketch, Ground, and Refine: Top-Down Dense Video Captioning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Deng, Chaorui Chen, Shizhe Chen, Da He, Yuan Wu, Qi Univ Adelaide Adelaide SA Australia INRIA Rocquencourt France Alibaba Grp Hangzhou Zhejiang Peoples R China
The dense video captioning task aims to detect and describe a sequence of events in a video for detailed and coherent storytelling. Previous works mainly adopt a "detect-then-describe" framework, which first... 详细信息
来源: 评论
Scene Graph Expansion for Semantics-Guided Image Outpainting
Scene Graph Expansion for Semantics-Guided Image Outpainting
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Chiao-An Tan, Cheng-Yo Fan, Wan-Cyuan Yang, Cheng-Fu Wu, Meng-Lin Wang, Yu-Chiang Frank Natl Taiwan Univ New Taipei Taiwan Qualcomm Technol Inc San Diego CA USA
In this paper, we address the task of semantics-guided image outpainting, which is to complete an image by generating semantically practical content. Different from most existing image outpainting works, we approach t... 详细信息
来源: 评论
Roses are Red, Violets are Blue... But Should VQA expect Them To?
Roses are Red, Violets are Blue... But Should VQA expect The...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kervadec, Corentin Antipov, Grigory Baccouche, Moez Wolf, Christian Cesson Seyigne Orange France INSA Lyon LIRIS UMR CNRS 5205 Lyon France
Models for Visual Question Answering (VQA) are notorious for their tendency to rely on dataset biases, as the large and unbalanced diversity of questions and concepts involved and tends to prevent models from learning... 详细信息
来源: 评论
DG-Font: Deformable Generative Networks for Unsupervised Font Generation
DG-Font: Deformable Generative Networks for Unsupervised Fon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xie, Yangchen Chen, Xinyuan Sun, Li Lu, Yue East China Normal Univ Shanghai Key Lab Multidimens Informat Proc Shanghai 200241 Peoples R China
Font generation is a challenging problem especially for some writing systems that consist of a large number of characters and has attracted a lot of attention in recent years. However, existing methods for font genera... 详细信息
来源: 评论
SimPoE: Simulated Character Control for 3D Human Pose Estimation
SimPoE: Simulated Character Control for 3D Human Pose Estima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yuan, Ye Wei, Shih-En Simon, Tomas Kitani, Kris Saragih, Jason Carnegie Mellon Univ Pittsburgh PA 15213 USA Facebook Real Labs Redmond WA USA
Accurate estimation of 3D human motion from monocular video requires modeling both kinematics (body motion without physical forces) and dynamics (motion with physical forces). To demonstrate this, we present SimPoE, a... 详细信息
来源: 评论
RegionCLIP: Region-based Language-Image Pretraining
RegionCLIP: Region-based Language-Image Pretraining
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhong, Yiwu Yang, Jianwei Zhang, Pengchuan Li, Chunyuan Codella, Noel Li, Liunian Harold Zhou, Luowei Dai, Xiyang Yuan, Lu Li, Yin Gao, Jianfeng Univ Wisconsin Madison WI 53706 USA Microsoft Res Redmond WA USA Microsoft Cloud AI Redmond WA USA Univ Calif Los Angeles Los Angeles CA 90024 USA
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved impressive results on image classification in both zero-shot and transfer learning settings. However, we show that directly applying su... 详细信息
来源: 评论
Semantic-Aware Multi-Label Adversarial Attacks
Semantic-Aware Multi-Label Adversarial Attacks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mahmood, Hassan El Hamifar, Ehsan Northeastern Univ Boston MA 02115 USA
Despite its importance, generating attacks for multi-label learning (MLL) models has received much less attention compared to multi-class recognition. Attacking an MLL model by optimizing a loss on the target set of l... 详细信息
来源: 评论