咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是131-140 订阅
排序:
Dissecting the High-Frequency Bias in Convolutional Neural Networks
Dissecting the High-Frequency Bias in Convolutional Neural N...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Abello, Antonio A. Hirata Jr, Roberto Wang, Zhangyang Univ Sao Paulo Butanta Sao Paulo SP Brazil Univ Texas Austin Austin TX 78712 USA
For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on impercep... 详细信息
来源: 评论
Deep Graphics Encoder for Real-Time Video Makeup Synthesis from Example
Deep Graphics Encoder for Real-Time Video Makeup Synthesis f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kips, Robin Jiang, Ruowei Ba, Sileye Phung, Edmund Aarabi, Parham Gori, Pietro Perrot, Matthieu Bloch, Isabelle LOreal Res & Innovat Clichy France Inst Polytech Paris Telecom Paris LTCI Paris France Modiface Toronto ON Canada Sorbonne Univ CNRS LIP6 Paris France
While makeup virtual-try-on is now widespread, parametrizing a computer graphics rendering engine for synthesizing images of a given cosmetics product remains a challenging task. In this paper, we introduce an inverse... 详细信息
来源: 评论
Generative Flows as a General Purpose Solution for Inverse Problems
Generative Flows as a General Purpose Solution for Inverse P...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chavez, Jose A. San Pablo Catholic Univ Arequipa Peru
Due to the success of generative flows to model data distributions, they have been explored in inverse problems. Given a pre-trained generative flow, previous work proposed to minimize the 2-norm of the latent variabl... 详细信息
来源: 评论
Finding Facial Forgery Artifacts with Parts-Based Detectors
Finding Facial Forgery Artifacts with Parts-Based Detectors
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Schwarcz, Steven Chellappa, Rama Univ Maryland College Pk MD 20742 USA Johns Hopkins Univ Baltimore MD USA
Manipulated videos, especially those where the identity of an individual has been modified using deep neural networks, are becoming an increasingly relevant threat in the modern day. In this paper, we seek to develop ... 详细信息
来源: 评论
Comparison of deep transfer learning strategies for digital pathology  31
Comparison of deep transfer learning strategies for digital ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mormont, Romain Geurts, Pierre Maree, Raphael Univ Liege Liege Belgium
In this paper, we study deep transfer learning as a way of overcoming object recognition challenges encountered in the field of digital pathology. Through several experiments, we investigate various uses of pre-traine... 详细信息
来源: 评论
Multistage Fusion of Face Matchers
Multistage Fusion of Face Matchers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tulyakov, Sergey Sankaran, Nishant Mohan, Deen Setlur, Srirangaraj Govindaraju, Venu Univ Buffalo Ctr Unified Biometr & Sensors Buffalo NY 14260 USA
Multistage, or serial, fusion refers to the algorithms sequentially fusing an increased number of matching results at each step and making decisions about accepting or rejecting the match hypothesis, or going to the n... 详细信息
来源: 评论
Contrastive Domain Adaptation
Contrastive Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Thota, Mamatha Leontidis, Georgios Univ Lincoln Sch Comp Sci Lincoln LN6 7TS England Univ Aberdeen Dept Comp Sci Aberdeen AB24 3UE Scotland
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain ad... 详细信息
来源: 评论
Application of computer vision and vector space model for tactical movement classification in badminton  30
Application of computer vision and vector space model for ta...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition workshops (cvprw)
作者: Weeratunga, Kokum Dharmaratne, Anuja How, Khoo Boon Monash Univ Sch Informat Technol Clayton Vic Australia Monash Univ Sch Engn Clayton Vic Australia Natl Sports Inst Malaysia Kuala Lumpur Malaysia
Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tacti... 详细信息
来源: 评论
Shadow-Mapping for Unsupervised Neural Causal Discovery
Shadow-Mapping for Unsupervised Neural Causal Discovery
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Vowels, Matthew J. Camgoz, Necati Cihan Bowden, Richard Univ Surrey Ctr Vis Speech & Signal Proc Guildford Surrey England
An important goal across most scientific fields is the discovery of causal structures underling a set of observations. Unfortunately, causal discovery methods which are based on correlation or mutual information can o... 详细信息
来源: 评论
ObjectGraphs: Using Objects and a Graph Convolutional Network for the Bottom-up recognition and Explanation of Events in Video
ObjectGraphs: Using Objects and a Graph Convolutional Networ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gkalelis, Nikolaos Goulas, Andreas Galanopoulos, Damianos Mezaris, Vasileios CERTH ITI 6th Km Charilaou Thermi RdPOB 60361 Thessaloniki Greece
In this paper a novel bottom-up video event recognition approach is proposed, ObjectGraphs, which utilizes a rich frame representation and the relations between objects within each frame. Following the application of ... 详细信息
来源: 评论