咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是1991-2000 订阅
排序:
StegaNeRV: Video Steganography using Implicit Neural Representation
StegaNeRV: Video Steganography using Implicit Neural Represe...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Monsij Biswal Tong Shao Kenneth Rose Peng Yin Sean McCarthy Department of Electrical and Computer Engineering University of California Santa Barbara Santa Barbara CA USA Dolby Laboratories Inc Sunnyvale CA USA
Numerous studies have recently advanced the state-of-the art for representing videos through an implicit neural network (INR). As these models become increasingly ubiquitous, there is a growing demand for concealing d... 详细信息
来源: 评论
Emotic Masked Autoencoder on Dual-views with Attention Fusion for Facial Expression recognition
Emotic Masked Autoencoder on Dual-views with Attention Fusio...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xuan-Bach Nguyen Hoang-Thien Nguyen Thanh-Huy Nguyen Nhu-Tai Do Quang Vinh Dinh University of Technology Ho Chi Minh City Vietnam Posts and Telecommunications Institute of Technology Ho Chi Minh City Vietnam University of Education Ho Chi Minh City Vietnam University of Economics Ho Chi Minh City-UEH Vietnam Vietnamese-German University Vietnam
Facial Expression recognition (FER) is a critical task within computer vision with diverse applications across various domains. Addressing the challenge of limited FER datasets, which hampers the generalization capabi... 详细信息
来源: 评论
Low Latency Point Cloud Rendering with Learned Splatting
Low Latency Point Cloud Rendering with Learned Splatting
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yueyu Hu Ran Gong Qi Sun Yao Wang Tandon School of Engineering New York University Tsinghua University
Point cloud is a critical 3D representation with many emerging applications. Because of the point sparsity and irregularity, high-quality rendering of point clouds is challenging and often requires complex computation... 详细信息
来源: 评论
LLM-Seg: Bridging Image Segmentation and Large Language Model Reasoning
LLM-Seg: Bridging Image Segmentation and Large Language Mode...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Junchi Wang Lei Ke ETH Zurich
Understanding human instructions to identify the target objects is vital for perception systems. In recent years, the advancements of Large Language Models (LLMs) have introduced new possibilities for image segmentati... 详细信息
来源: 评论
ConPro: Learning Severity Representation for Medical Images using Contrastive Learning and Preference Optimization
ConPro: Learning Severity Representation for Medical Images ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Hong Nguyen Hoang Nguyen Melinda Chang Hieu Pham Shrikanth Narayanan Michael Pazzani University of Southern California Los Angeles United States Vinuni-Illinois Smart Health Center Hanoi Vietnam
Understanding the severity of conditions shown in images in medical diagnosis is crucial, serving as a key guide for clinical assessment, treatment, as well as evaluating longitudinal progression. This paper proposes ... 详细信息
来源: 评论
Sparse multi-view hand-object reconstruction for unseen environments
Sparse multi-view hand-object reconstruction for unseen envi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yik Lung Pang Changjae Oh Andrea Cavallaro Centre for Intelligent Sensing Queen Mary University of London Idiap Research Institute École Polytechnique Fédérale de Lausanne
Recent works in hand-object reconstruction mainly focus on the single-view and dense multi-view settings. On the one hand, single-view methods can leverage learned shape priors to generalise to unseen objects but are ... 详细信息
来源: 评论
Dformer: Learning Efficient Image Restoration with Perceptual Guidance
Dformer: Learning Efficient Image Restoration with Perceptua...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Nodirkhuja Khudjaev Roman Tsoy S M A Sharif Azamat Myrzabekov Seongwan Kim Jaeho Lee Opt-AI Inc. LG Sciencepark Seoul South Korea
Image restoration tasks incorporate widespread real-world application. Apart from its significant practicability, generic deep image restoration methods still fail to handle complex tasks, like shadow removal, low-lig... 详细信息
来源: 评论
FairSSD: Understanding Bias in Synthetic Speech Detectors
FairSSD: Understanding Bias in Synthetic Speech Detectors
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Amit Kumar Singh Yadav Kratika Bhagtani Davide Salvi Paolo Bestagini Edward J. Delp Video and Image Processing Lab (VIPER) Purdue University West Lafayette Indiana USA Dipartimento di Elettronica Informazione e Bioingegneria Milano Italy
Methods that can generate synthetic speech which is perceptually indistinguishable from speech recorded by a human speaker, are easily available. Several incidents report misuse of synthetic speech generated from thes... 详细信息
来源: 评论
Red-Teaming Segment Anything Model
Red-Teaming Segment Anything Model
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Krzysztof Jankowski Bartlomiej Sobieski Mateusz Kwiatkowski Jakub Szulc Michał Janik Hubert Baniecki Przemysław Biecek University of Warsaw Warsaw University of Technology
Foundation models have emerged as pivotal tools, tackling many complex tasks through pre-training on vast datasets and subsequent fine-tuning for specific applications. The Segment Anything Model is one of the first a... 详细信息
来源: 评论
Leveraging Large Language Models for Multimodal Search
Leveraging Large Language Models for Multimodal Search
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Oriol Barbany Michael Huang Xinliang Zhu Arnab Dhua CSIC-UPC Institut de Robòtica i Informàtica Industrial Visual Search & AR Amazon
Multimodal search has become increasingly important in providing users with a natural and effective way to express their search intentions. Images offer fine-grained details of the desired products, while text allows ... 详细信息
来源: 评论