咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2021-2030 订阅
排序:
AIS 2024 Challenge on Video Quality Assessment of User-Generated Content: Methods and Results
AIS 2024 Challenge on Video Quality Assessment of User-Gener...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Marcos V. Conde Saman Zadtootaghaj Nabajeet Barman Radu Timofte Chenlong He Qi Zheng Ruoxi Zhu Zhengzhong Tu Haiqiang Wang Xiangguang Chen Wenhui Meng Xiang Pan Huiying Shi Han Zhu Xiaozhong Xu Lei Sun Zhenzhong Chen Shan Liu Zicheng Zhang Haoning Wu Yingjie Zhou Chunyi Li Xiaohong Liu Weisi Lin Guangtao Zhai Wei Sun Yuqin Cao Yanwei Jiang Jun Jia Zhichao Zhang Zijian Chen Weixia Zhang Xiongkuo Min Steve Göring Zihao Qi Chen Feng CAIDAS & IFI Computer Vision Lab. University of Würzburg Sony Interactive Entertainment FTG
This paper reviews the AIS 2024 Video Quality Assessment (VQA) Challenge, focused on User-Generated Content (UGC). The aim of this challenge is to gather deep learning-based methods capable of estimating the perceptua... 详细信息
来源: 评论
Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble
Divide and Conquer: High-Resolution Industrial Anomaly Detec...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Blaž Rolih Dick Ameln Ashwin Vaidya Samet Akcay Faculty of Computer and Information Science University of Ljubljana Intel
Industrial anomaly detection is an important task within computer vision with a wide range of practical use cases. The small size of anomalous regions in many real-world datasets necessitates processing the images at ... 详细信息
来源: 评论
Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Survey
Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Sur...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Nicolas Chahine Marcos V. Conde Daniela Carfora Gabriel Pacianotto Benoit Pochon Sira Ferradans Radu Timofte Zhichao Duan Xinrui Xu Yipo Huang Quan Yuan Xiangfei Sheng Zhichao Yang Leida Li Haotian Fan Fangyuan Kong Yifang Xu Wei Sun Weixia Zhang Yanwei Jiang Haoning Wu Zicheng Zhang Jun Jia Yingjie Zhou Zhongpeng Ji Xiongkuo Min Weisi Lin Guangtao Zhai Xiaoqi Wang Junqi Liu Zixi Guo Yun Zhang Zewen Chen Wen Wang Juan Wang Bing Li DXOMARK CAIDAS & IFI Computer Vision Lab University of Würzburg Xidian University ByteDance Inc Shanghai Jiao Tong University Nanyang Technological University Huawei School of Electronics and Communication Engineering Sun Yat-sen University China State Key Laboratory of Multimodal Artificial Intelligence Systems CASIA School of Artificial Intelligence University of Chinese Academy of Sciences Beijing Jiaotong University
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results. This challenge aims to obtain an efficient deep neural network capable of estimating the percep... 详细信息
来源: 评论
Fully Test-time Adaptation for Object Detection
Fully Test-time Adaptation for Object Detection
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xiaoqian Ruan Wei Tang University of Illinois Chicago
Though the object detection performance on standard benchmarks has been improved drastically in the last decade, current object detectors are often vulnerable to domain shift between the training data and testing imag... 详细信息
来源: 评论
SAM-PM: Enhancing Video Camouflaged Object Detection using Spatio-Temporal Attention
SAM-PM: Enhancing Video Camouflaged Object Detection using S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Muhammad Nawfal Meeran Gokul Adethya T Bhanu Pratyush Mantha National Institute of Technology Tiruchirappalli
In the domain of large foundation models, the Segment Anything Model (SAM) has gained notable recognition for its exceptional performance in image segmentation. However, tackling the video camouflage object detection ... 详细信息
来源: 评论
Domain Targeted Synthetic Plant Style Transfer using Stable Diffusion, LoRA and ControlNet
Domain Targeted Synthetic Plant Style Transfer using Stable ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zane K. J. Hartley Rob J. Lind Michael P. Pound Andrew P. French University of Nottingham Syngenta Jealott’s Hill International Research Centre
Synthetic images can help alleviate much of the cost in the creation of training data for plant phenotyping-focused AI development. Synthetic-to-real style transfer is of particular interest to users of artificial dat... 详细信息
来源: 评论
Prompting Foundational Models for Omni-supervised Instance Segmentation
Prompting Foundational Models for Omni-supervised Instance S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Arnav M. Das Ritwick Chaudhry Kaustav Kundu Davide Modolo University of Washington Seattle AWS AI Labs
Pixel-level mask annotation costs are a major bottleneck in training deep neural networks for instance segmentation. Recent promptable foundation models like the Segment Anything Model (SAM) and GroundedDINO (GDino) h... 详细信息
来源: 评论
Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution
Training Transformer Models by Wavelet Losses Improves Quant...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Cansu Korkmaz A. Murat Tekalp College of Engineering and KUIS AI Center Koc University
Transformer-based models have achieved remarkable results in low-level vision tasks including image super-resolution (SR). However, early Transformer-based approaches that rely on self-attention within non-overlapping... 详细信息
来源: 评论
Learning Surface Terrain Classifications from Ground Penetrating Radar
Learning Surface Terrain Classifications from Ground Penetra...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Anja Sheppard Jason Brown Nilton Renno Katherine A. Skinner The University of Michigan Ann Arbor MI
Terrain classification is an important problem for mobile robots operating in extreme environments as it can aid downstream tasks such as autonomous navigation and planning. While RGB cameras are widely used for terra... 详细信息
来源: 评论
SyntStereo2Real: Edge-Aware GAN for Remote Sensing Image-to-Image Translation while Maintaining Stereo Constraint
SyntStereo2Real: Edge-Aware GAN for Remote Sensing Image-to-...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Vasudha Venkatesan Daniel Panangian Mario Fuentes Reyes Ksenia Bittner University of Freiburg German Aerospace Center (DLR)
In the field of remote sensing, the scarcity of stereo-matched and particularly lack of accurate ground truth data often hinders the training of deep neural networks. The use of synthetically generated images as an al... 详细信息
来源: 评论