咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2051-2060 订阅
排序:
Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap
Are NeRFs ready for autonomous driving? Towards closing the ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Carl Lindström Georg Hess Adam Lilja Maryam Fatemi Lars Hammarstrand Christoffer Petersson Lennart Svensson Zenseact Chalmers University of Technology
Neural Radiance Fields (NeRFs) have emerged as promising tools for advancing autonomous driving (AD) research, offering scalable closed-loop simulation and data augmentation capabilities. However, to trust the results... 详细信息
来源: 评论
Multi-modal Arousal and Valence Estimation under Noisy Conditions
Multi-modal Arousal and Valence Estimation under Noisy Condi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Denis Dresvyanskiy Maxim Markitantov Jiawei Yu Heysem Kaya Alexey Karpov Ulm University Germany ITMO University Russia St. Petersburg Federal Research Center of the Russian Academy of Sciences St. Petersburg Russia Department of Information and Computing Sciences Utrecht University The Netherlands
Automatic emotion recognition has gained significant attention over the past two decades due to the central role that emotions play in human communication. While multi-modal systems demonstrate high performances on la... 详细信息
来源: 评论
Learnable Global Spatio-Temporal Adaptive Aggregation for Bracketing Image Restoration and Enhancement
Learnable Global Spatio-Temporal Adaptive Aggregation for Br...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xinwei Dai Yuanbo Zhou Xintao Qiu Hui Tang Wei Deng Qingquan Gao Tong Tong Fuzhou University Imperial Vision Technology
Employing specific networks to address different types of degradation often proved to be complex and time-consuming in practical applications. The Bracket Image Restoration and Enhancement (BIRE) aimed to address vari... 详细信息
来源: 评论
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods and Results
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yawei Li Yulun Zhang Radu Timofte Luc Van Gool Lei Yu Youwei Li Xinpeng Li Ting Jiang Qi Wu Mingyan Han Wenjie Lin Chengzhi Jiang Jinting Luo Haoqiang Fan Shuaicheng Liu Yucong Wang Minjie Cai Mingxi Li Yuhang Zhang Xian-Jun Fan Yankai Sheng Yanyu Mao Nihao Zhang Qian Wang Mingjun Zheng Long Sun Jinshan Pan Jiangxin Dong Jinhui Tang Zhongbao Yang Yan Wang Erlin Pan Qixuan Cai Xinan Dai Magauiya Zhussip Nikolay Kalyazin Dmitry Vyal Xueyi Zou Youliang Yan Heaseo Chung Jin Zhang Gaocheng Yu Feng Zhang Hongbin Wang Bohao Liao Zhibo Du Yu-Liang Wu Gege Shi Long Peng Yang Wang Yang Cao Zhengjun Zha Zhi-Kai Huang Yi-Chung Chen Yuan-Chun Chiang Hao-Hsiang Yang Wei-Ting Chen Hua-En Chang I-Hsiang Chen Chia-Hsuan Hsieh Sy-Yen Kuo Xin Liu Jiahao Pan Hongyuan Yu Weichen Yu Lin Ge Jiahua Dong Yajun Zou Zhuoyuan Wu Binnan Han Xiaolin Zhang Heng Zhang Xuanwu Yin Kunlong Zuo Weijian Deng Hongjie Yuan Zengtong Lu Mingyu Ouyang Wenzhuo Ma Nian Liu Hanyou Zheng Yuantong Zhang Junxi Zhang Zhenzhong Chen Garas Gendy Nabil Sabor Jingchao Hou Guanghui He Yurui Zhu Xi Wang Xueyang Fu Zheng-Jun Zha Daheng Yin Mengyang Liu Baijun Chen Ao Li Lei Luo Kangjun Jin Ce Zhu Xiaoming Zhang Chengxing Xie Linze Li Haiteng Meng Tianlin Zhang Tianrui Li Xiaole Zhao Zhao Zhang Baiang Li Huan Zheng Suiyi Zhao Yangcheng Gao Jiahuan Ren Kang Hu Jingpeng Shi Zhijian Wu Dingjiang Huang Jinchen Zhu Hui Li Qianru Xv Tianle Liu Shizhuang Weng Gang Wu Junpeng Jiang Xianming Liu Junjun Jiang Mingjian Zhang Jing Hu Chengxu Wu Qinrui Fan Chengming Feng Ziwei Luo Shu Hu Siwei Lyu Xi Wu Xin Wang Computer Vision Lab ETH Zurich
This paper reviews the NTIRE 2023 challenge on efficient single-image super-resolution with a focus on the proposed solutions and results. The aim of this challenge is to devise a network that reduces one or several a...
来源: 评论
Recognize Anything: A Strong Image Tagging Model
Recognize Anything: A Strong Image Tagging Model
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Youcai Zhang Xinyu Huang Jinyu Ma Zhaoyang Li Zhaochuan Luo Yanchun Xie Yuzhuo Qin Tong Luo Yaqian Li Shilong Liu Yandong Guo Lei Zhang OPPO Research Institute International Digital Economy Academy (IDEA) AI2Robotics
We present the Recognize Anything Model (RAM): a strong foundation model for image tagging. RAM makes a substantial step for foundation models in computer vision, demonstrating the zero-shot ability to recognize any c... 详细信息
来源: 评论
ALINA: Advanced Line Identification and Notation Algorithm
ALINA: Advanced Line Identification and Notation Algorithm
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Mohammed Abdul Hafeez Khan Parth Ganeriwala Siddhartha Bhattacharyya Natasha Neogi Raja Muthalagu Florida Institute of Technology Melbourne Florida NASA Langley Research Center Hampton Virginia BITS Pilani Dubai Campus Dubai UAE
Labels are the cornerstone of supervised machine learning algorithms. Most visual recognition methods are fully supervised, using bounding boxes or pixel-wise segmentations for object localization. Traditional labelin... 详细信息
来源: 评论
DOAD: Decoupled One Stage Action Detection Network
DOAD: Decoupled One Stage Action Detection Network
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Shuning Chang Pichao Wang Fan Wang Jiashi Feng Mike Zheng Shou Showlab National University of Singapore Alibaba Group National University of Singapore
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding. Existing methods are mostly two-stage based, with one stage for person bounding box generation ... 详细信息
来源: 评论
Classifier Guided Cluster Density Reduction for Dataset Selection
Classifier Guided Cluster Density Reduction for Dataset Sele...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Cheng Chang Keyu Long Zijian Li Himanshu Rai Layer 6 AI
In this paper, we address the challenge of selecting an optimal dataset from a source pool with annotations to enhance performance on a target dataset derived from a different source. This is important in scenarios wh... 详细信息
来源: 评论
Adapting the Segment Anything Model During Usage in Novel Situations
Adapting the Segment Anything Model During Usage in Novel Si...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Robin Schön Julian Lorenz Katja Ludwig Rainer Lienhart Universität Augsburg Augsburg
The interactive segmentation task consists in the creation of object segmentation masks based on user interactions. The most common way to guide a model towards producing a correct segmentation consists in clicks on t... 详细信息
来源: 评论
What does CLIP know about peeling a banana?
What does CLIP know about peeling a banana?
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Claudia Cuttano Gabriele Rosi Gabriele Trivigno Giuseppe Averta Politecnico di Torino Focoos AI
Humans show an innate capability to identify tools to support specific actions. The association between objects parts and the actions they facilitate is usually named affordance. Being able to segment objects parts de... 详细信息
来源: 评论