咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2101-2110 订阅
排序:
GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing
GPT as Psychologist? Preliminary Evaluations for GPT-4V on V...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Hao Lu Xuesong Niu Jiyao Wang Yin Wang Qingyong Hu Jiaqi Tang Yuting Zhang Kaishen Yuan Bin Huang Zitong Yu Dengbo He Shuiguang Deng Hao Chen Yingcong Chen Shiguang Shan The Hong Kong University of Science & Technology (Guangzhou) The Hong Kong University of Science & Technology Beijing Institute for General Artificial Intelligence Zhejiang University Great Bay University Hangzhou Research Institute Beihang University Chinese Academy of Sciences Institute of Computing Technology
Multimodal large language models (MLLMs) are designed to process and integrate information from multiple sources, such as text, speech, images, and videos. Despite its success in language understanding, it is critical... 详细信息
来源: 评论
The 5th AI City Challenge
The 5th AI City Challenge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yang, Xiaodong Yao, Yue Zheng, Liang Chakraborty, Pranamesh Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Amazon Seattle WA USA QCraft Santa Clara CA USA
The AI City Challenge was created with two goals in mind: (1) pushing the boundaries of research and development in intelligent video analysis for smarter cities use cases, and (2) assessing tasks where the level of p... 详细信息
来源: 评论
Enforcing Conditional Independence for Fair Representation Learning and Causal Image Generation
Enforcing Conditional Independence for Fair Representation L...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jensen Hwa Qingyu Zhao Aditya Lahiri Adnan Masood Babak Salimi Ehsan Adeli Stanford University Weill Cornell Medicine University of California San Diego UST
Conditional independence (CI) constraints are critical for defining and evaluating fairness in machine learning, as well as for learning unconfounded or causal representations. Traditional methods for ensuring fairnes... 详细信息
来源: 评论
DECNet: A Non-Contacting Dual-Modality Emotion Classification Network for Driver Health Monitoring
DECNet: A Non-Contacting Dual-Modality Emotion Classificatio...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zhekang Dong Chenhao Hu Shiqi Zhou Liyan Zhu Junfan Wang Yi Chen Xudong Lv Xiaoyue Ji Hangzhou Dianzi University Zhejiang Provincial Key Laboratory of Equipment Electronics Zhejiang University Tsinghua University
Negative emotions have been identified as significant factors influencing driver behavior, easily leading to extremely serious traffic accidents. Hence, there is a pressing need to develop an automatic emotion classif... 详细信息
来源: 评论
DSTCFuse: A Method based on Dual-cycled Cross-awareness of Structure Tensor for Semantic Segmentation via Infrared and Visible Image Fusion
DSTCFuse: A Method based on Dual-cycled Cross-awareness of S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xuan Li Rongfu Chen Jie Wang Lei Ma Li Cheng Haiwen Yuan School of Electrical and Information Engineering Wuhan Institute of Technology Hubei Key Laboratory of Optical Information and Pattern Recognition
Multi-modality information fusion can compensate deficiencies of single modality and provide rich scene information for 2D semantic segmentation. However, the inconsistency in the feature space between different modal... 详细信息
来源: 评论
Fake it to make it: Using synthetic data to remedy the data shortage in joint multi-modal speech-and-gesture synthesis
Fake it to make it: Using synthetic data to remedy the data ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Shivam Mehta Anna Deichler Jim O’Regan Birger Moëll Jonas Beskow Gustav Eje Henter Simon Alexanderson KTH Royal Institute of Technology Sweden Motorica AB Sweden
Although humans engaged in face-to-face conversation simultaneously communicate both verbally and non-verbally, methods for joint and unified synthesis of speech audio and co-speech 3D gesture motion from text are a n... 详细信息
来源: 评论
Bracketing Image Restoration and Enhancement with High-Low Frequency Decomposition
Bracketing Image Restoration and Enhancement with High-Low F...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Genggeng Chen Kexin Dai Kangzhen Yang Tao Hu Xiangyu Chen Yongqing Yang Wei Dong Peng Wu Yanning Zhang Qingsen Yan Xi’an University of Architecture and Technology Northwestern Polytechnical University University of Macau Xi’an Institute of Optics and Precision Mechanics of CAS
In real-world scenarios, due to a series of image degradations, obtaining high-quality, clear content photos is challenging. While significant progress has been made in synthesizing high-quality images, previous metho... 详细信息
来源: 评论
Cross-Domain Synthetic-to-Real In-the-Wild Depth and Normal Estimation for 3D Scene Understanding
Cross-Domain Synthetic-to-Real In-the-Wild Depth and Normal ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jay Bhanushali Manivannan Muniyandi Praneeth Chakravarthula Indian Institute of Technology Madras UNC Chapel Hill
We present a cross-domain inference technique that learns from synthetic data to estimate depth and normals for in-the-wild omnidirectional 3D scenes encountered in real-world uncontrolled settings. To this end, we in... 详细信息
来源: 评论
Image-caption difficulty for efficient weakly-supervised object detection from in-the-wild data
Image-caption difficulty for efficient weakly-supervised obj...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Giacomo Nebbia Adriana Kovashka University of Pittsburgh
In recent years, we have witnessed the collection of larger and larger multi-modal, image-caption datasets: from hundreds of thousands such pairs to hundreds of millions. Such datasets allow researchers to build power... 详细信息
来源: 评论
NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and Results
NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset,...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Perez-Pellitero, Eduardo Catley-Chandar, Sibi Leonardis, Ales Timofte, Radu Wang, Xian Li, Yong Wang, Tao Song, Fenglong Liu, Zhen Lin, Wenjie Li, Xinpeng Rao, Qing Jiang, Ting Han, Mingyan Fan, Haoqiang Sun, Jian Liu, Shuaicheng Chen, Xiangyu Liu, Yihao Zhang, Zhengwen Qiao, Yu Dong, Chao Chee, Evelyn Yi Lyn Shen, Shanlan Duan, Yubo Chen, Guannan Sun, Mengdi Gao, Yan Zhang, Lijie Akhil, K. A. Jiji, C., V Sharif, S. M. A. Naqvi, Rizwan Ali Biswas, Mithun Kim, Sungjun Xia, Chenjie Zhao, Bowen Ye, Zhangyu Lu, Xiwen Cao, Yanpeng Yang, Jiangxin Cao, Yanlong Rosh, Green K. S. Lomte, Sachin Deepak Krishnan, Nikhil Prasad, B. H. Pawan Huawei Noahs Ark Lab Shenzhen Peoples R China Megvii Technol Beijing Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Black Sesame Technol Singapore Singapore BOE Technol Co Ltd Beijing Peoples R China Coll Engn Trivandrum Trivandrum Kerala India Zhejiang Univ State Key Lab Fluid Power & Mechatron Syst Hangzhou Peoples R China Zhejiang Univ Key Lab Adv Mfg Technol Hangzhou Peoples R China Sejong Univ Seoul South Korea Rigel IT Dhaka Bangladesh Samsung R&D Inst India Bangalore SRI B Bangalore Karnataka India
This paper reviews the first challenge on high-dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2021. This manuscript foc... 详细信息
来源: 评论