咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2191-2200 订阅
排序:
SAM-CLIP: Merging vision Foundation Models towards Semantic and Spatial Understanding
SAM-CLIP: Merging Vision Foundation Models towards Semantic ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Haoxiang Wang Pavan Kumar Anasosalu Vasu Fartash Faghri Raviteja Vemulapalli Mehrdad Farajtabar Sachin Mehta Mohammad Rastegari Oncel Tuzel Hadi Pouransari University of Illinois Urbana-Champaign Apple
The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training ob... 详细信息
来源: 评论
Key Patches Are All You Need: A Multiple Instance Learning Framework For Robust Medical Diagnosis
Key Patches Are All You Need: A Multiple Instance Learning F...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: D. J. Araújo M. R. Verdelho A. Bissoto J. C. Nascimento C. Santiago C. Barata LARSyS Instituto Superior Técnico Institute for Systems and Robotics Portugal Institute of Computing Recod.ai Lab University of Campinas Brazil Lisbon ELLIS Unit
Deep learning models have revolutionized the field of medical image analysis, due to their outstanding performances. However, they are sensitive to spurious correlations, often taking advantage of dataset bias to impr... 详细信息
来源: 评论
Probing Conceptual Understanding of Large Visual-Language Models
Probing Conceptual Understanding of Large Visual-Language Mo...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Madeline Schiappa Raiyaan Abdullah Shehreen Azad Jared Claypoole Michael Cogswell Ajay Divakaran Yogesh Rawat Center for Research in Computer Vision University of Central Florida SRI International
In recent years large visual-language (V+L) models have achieved great success in various downstream tasks. However, it is not well studied whether these models have a conceptual grasp of the visual content. In this w... 详细信息
来源: 评论
Exploring AI-Based Satellite Pose Estimation: from Novel Synthetic Dataset to In-Depth Performance Evaluation
Exploring AI-Based Satellite Pose Estimation: from Novel Syn...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Fabien Gallet Christophe Marabotto Thomas Chambon Institut de Recherche Technologique Saint Exupéry
vision-based pose estimation using deep learning offers a promising cost effective and versatile solution for relative satellite navigation purposes. Using such a solution in closed loop to control spacecraft position... 详细信息
来源: 评论
3D Clothed Human Reconstruction from Sparse Multi-View Images
3D Clothed Human Reconstruction from Sparse Multi-View Image...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jin Gyu Hong Seung Young Noh Hee Kyung Lee Won Sik Cheong Ju Yong Chang Dept of ECE Kwangwoon University Seoul South Korea Electronics and Telecommunications Research Institute Daejeon South Korea
Clothed human reconstruction based on implicit functions has recently received considerable attention. In this study, we explore the most effective 2D feature fusion method from multi-view inputs experimentally and pr... 详细信息
来源: 评论
Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation patterns
Run-time Monitoring of 3D Object Detection in Automated Driv...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Hakan Yekta Yatbaz Mehrdad Dianati Konstantinos Koufos Roger Woodman WMG University of Warwick School of Electronics Electrical Engineering and Computer Science (EEECS) Queen's University of Belfast
Monitoring the integrity of object detection for errors within the perception module of automated driving systems (ADS) is paramount for ensuring safety. Despite recent advancements in deep neural network (DNN)-based ... 详细信息
来源: 评论
Event-Based Eye Tracking. AIS 2024 Challenge Survey
Event-Based Eye Tracking. AIS 2024 Challenge Survey
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zuowen Wang Chang Gao Zongwei Wu Marcos V. Conde Radu Timofte Shih-Chii Liu Qinyu Chen Zheng-jun Zha Wei Zhai Han Han Bohao Liao Yuliang Wu Zengyu Wan Zhong Wang Yang Cao Ganchao Tan Jinze Chen Yan Ru Pei Sasskia Brüers Sébastien Crouzet Douglas McLelland Oliver Coenen Baoheng Zhang Yizhao Gao Jingyuan Li Hayden Kwok-Hay So Philippe Bich Chiara Boretti Luciano Prono Mircea Lică David Dinucu-Jianu Cătălin Grîu Xiaopeng Lin Hongwei Ren Bojun Cheng Xinan Zhang Valentin Vial Anthony Yezzi James Tsai Institute of Neuroinformatics University of Zurich and ETH Zurich Delft University of Technology University of Würzburg Leiden University University of Science and Technology of China Brainchip Inc The University of Hong Kong Polytechnic of Turin The Hong Kong University of Science and Technology (Guangzhou) Georgia Institute of Technology
This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge. The task of the challenge focuses on processing eye movement recorded with event cameras and predicting the pupil center of the eye. The chall... 详细信息
来源: 评论
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods and Results
NTIRE 2023 Challenge on Efficient Super-Resolution: Methods ...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Li, Yawei Zhang, Yulun Timofte, Radu Van Gool, Luc Yu, Lei Li, Youwei Li, Xinpeng Jiang, Ting Wu, Qi Han, Mingyan Lin, Wenjie Jiang, Chengzhi Luo, Jinting Fan, Haoqiang Liu, Shuaicheng Wang, Yucong Cai, Minjie Li, Mingxi Zhang, Yuhang Fan, Xian-Jun Sheng, Yankai Mao, Yanyu Zhang, Nihao Wang, Qian Zheng, Mingjun Sun, Long Pan, Jinshan Dong, Jiangxin Tang, Jinhui Yang, Zhongbao Wang, Yan Pan, Erlin Cai, Qixuan Dai, Xinan Zhussip, Magauiya Kalyazin, Nikolay Vyal, Dmitry Zou, Xueyi Yan, Youliang Chung, Heaseo Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Liao, Bohao Du, Zhibo Wu, Yu-Liang Shi, Gege Peng, Long Wang, Yang Cao, Yang Zha, Zhengjun Huang, Zhi-Kai Chen, Yi-Chung Chiang, Yuan-Chun Yang, Hao-Hsiang Chen, Wei-Ting Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Liu, Xin Pan, Jiahao Yu, Hongyuan Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Yin, Xuanwu Zuo, Kunlong Deng, Weijian Yuan, Hongjie Lu, Zengtong Ouyang, Mingyu Ma, Wenzhuo Liu, Nian Zheng, Hanyou Zhang, Yuantong Zhang, Junxi Chen, Zhenzhong Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Zhu, Yurui Wang, Xi Fu, Xueyang Zha, Zheng-Jun Yin, Daheng Liu, Mengyang Chen, Baijun Li, Ao Luo, Lei Jin, Kangjun Zhu, Ce Zhang, Xiaoming Xie, Chengxing Li, Linze Meng, Haiteng Zhang, Tianlin Li, Tianrui Zhao, Xiaole Zhang, Zhao Li, Baiang Zheng, Huan Zhao, Suiyi Gao, Yangcheng Ren, Jiahuan Hu, Kang Shi, Jingpeng Wu, Zhijian Huang, Dingjiang Zhu, Jinchen Li, Hui Xv, Qianru Liu, Tianle Weng, Shizhuang Wu, Gang Jiang, Junpeng Liu, Xianming Jiang, Junjun Zhang, Mingjian Hu, Jing Wu, Chengxu Fan, Qinrui Feng, Chengming Luo, Ziwei Hu, Shu Lyu, Siwei Wu, Xi Wang, Xin Computer Vision Lab ETH Zurich Switzerland Computer Vision Lab University of Würzburg Germany Megvii Technology China MicroBT China College of Computer Science and Electronic Engineering Hunan University China Attrsense Xian University of Posts and Telecommunications Xi'an China National Engineering Laboratory for Cyber Event Warning and Control Technologies China Nanjing University of Science and Technology China Nankai University China University of Electronic Science and Technology of China China Tianjin University China Noah's Ark Lab Huawei Technologies McMaster University Canada Espresomedia Korea Republic of AntGroup China University of Science and Technology of China China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan ServiceNow United States China Mobile Research Institute China Chongqing University of Technology China Multimedia Department Xiaomi Inc. China Institute of Automation Chinese Academy of Sciences China Shenyang Institute of Automation Chinese Academy of Sciences China School of Information and Communication Engineering Communication University of China China Smart Classroom Division Ruijie Networks Co. Ltd. China School of Remote Sensing and Information Engineering Wuhan University China Micro-Nano Electronics Department Shanghai Jiao Tong University Shanghai200240 China Electrical Engineering Department Faculty of Engineering Assiut University Assiut71516 Egypt Southeast University China University of Electronic Science and Technology of China Chengdu China Chongqing University of Posts and Telecommunications Chongqing China Information Technology Co. Ltd Hangzhou China Southwest Jiaotong University China National Space Science Center Chinese Academy of Science China Hefei University of Technology Hefei China Anhui University China Fried Ric
This paper reviews the NTIRE 2023 challenge on efficient single-image super-resolution with a focus on the proposed solutions and results. The aim of this challenge is to devise a network that reduces one or several a... 详细信息
来源: 评论
Scaling Graph Convolutions for Mobile vision
Scaling Graph Convolutions for Mobile Vision
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: William Avery Mustafa Munir Radu Marculescu The University of Texas at Austin
To compete with existing mobile architectures, Mobile-ViG introduces Sparse vision Graph Attention (SVGA), a fast token-mixing operator based on the principles of GNNs. However, MobileViG scales poorly with model size... 详细信息
来源: 评论
Feature Corrective Transfer Learning: End-to-End Solutions to Object Detection in Non-Ideal Visual Conditions
Feature Corrective Transfer Learning: End-to-End Solutions t...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Chuheng Wei Guoyuan Wu Matthew J. Barth University of California Riverside
A significant challenge in the field of object detection lies in the system’s performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our stu... 详细信息
来源: 评论